ncf_test.py 8.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests NCF."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
Reed's avatar
Reed committed
22
import mock
23
24
25
26

import numpy as np
import tensorflow as tf

Reed's avatar
Reed committed
27
from absl.testing import flagsaver
28
from official.recommendation import constants as rconst
29
from official.recommendation import data_pipeline
30
from official.recommendation import neumf_model
Shining Sun's avatar
Shining Sun committed
31
32
from official.recommendation import ncf_common
from official.recommendation import ncf_estimator_main
33
34
from official.recommendation import ncf_keras_main
from official.utils.testing import integration
35
36
37


NUM_TRAIN_NEG = 4
38
39
40


class NcfTest(tf.test.TestCase):
Reed's avatar
Reed committed
41
42
43
44

  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(NcfTest, cls).setUpClass()
Shining Sun's avatar
Shining Sun committed
45
    ncf_common.define_ncf_flags()
Reed's avatar
Reed committed
46

47
48
49
50
51
52
53
54
55
56
57
58
59
  def setUp(self):
    self.top_k_old = rconst.TOP_K
    self.num_eval_negatives_old = rconst.NUM_EVAL_NEGATIVES
    rconst.NUM_EVAL_NEGATIVES = 2

  def tearDown(self):
    rconst.NUM_EVAL_NEGATIVES = self.num_eval_negatives_old
    rconst.TOP_K = self.top_k_old

  def get_hit_rate_and_ndcg(self, predicted_scores_by_user, items_by_user,
                            top_k=rconst.TOP_K, match_mlperf=False):
    rconst.TOP_K = top_k
    rconst.NUM_EVAL_NEGATIVES = predicted_scores_by_user.shape[1] - 1
60
61
62
63
64
65
66
    batch_size = items_by_user.shape[0]

    users = np.repeat(np.arange(batch_size)[:, np.newaxis],
                      rconst.NUM_EVAL_NEGATIVES + 1, axis=1)
    users, items, duplicate_mask = \
      data_pipeline.BaseDataConstructor._assemble_eval_batch(
          users, items_by_user[:, -1:], items_by_user[:, :-1], batch_size)
67
68
69
70
71
72
73

    g = tf.Graph()
    with g.as_default():
      logits = tf.convert_to_tensor(
          predicted_scores_by_user.reshape((-1, 1)), tf.float32)
      softmax_logits = tf.concat([tf.zeros(logits.shape, dtype=logits.dtype),
                                  logits], axis=1)
74
      duplicate_mask = tf.convert_to_tensor(duplicate_mask, tf.float32)
75

Shining Sun's avatar
Shining Sun committed
76
      metric_ops = neumf_model._get_estimator_spec_with_metrics(
77
78
79
80
81
82
83
84
85
86
87
88
89
90
          logits=logits, softmax_logits=softmax_logits,
          duplicate_mask=duplicate_mask, num_training_neg=NUM_TRAIN_NEG,
          match_mlperf=match_mlperf).eval_metric_ops

      hr = metric_ops[rconst.HR_KEY]
      ndcg = metric_ops[rconst.NDCG_KEY]

      init = [tf.global_variables_initializer(),
              tf.local_variables_initializer()]

    with self.test_session(graph=g) as sess:
      sess.run(init)
      return sess.run([hr[1], ndcg[1]])

91
92
93
  def test_hit_rate_and_ndcg(self):
    # Test with no duplicate items
    predictions = np.array([
94
95
96
97
        [2., 0., 1.],  # In top 2
        [1., 0., 2.],  # In top 1
        [2., 1., 0.],  # In top 3
        [3., 4., 2.]   # In top 3
98
99
100
    ])
    items = np.array([
        [2, 3, 1],
101
        [3, 1, 2],
102
        [2, 1, 3],
103
        [1, 3, 2],
104
    ])
105
106

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
107
108
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
109
110

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
111
112
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
113
114

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
115
116
117
118
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

119
120
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
                                          match_mlperf=True)
121
122
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
123
124
125

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
                                          match_mlperf=True)
126
127
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
128
129
130

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
                                          match_mlperf=True)
131
132
133
134
135
136
137
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

    # Test with duplicate items. In the MLPerf case, we treat the duplicates as
    # a single item. Otherwise, we treat the duplicates as separate items.
    predictions = np.array([
138
139
140
141
        [2., 2., 3., 1.],  # In top 4. MLPerf: In top 3
        [1., 0., 2., 3.],  # In top 1. MLPerf: In top 1
        [2., 3., 2., 0.],  # In top 4. MLPerf: In top 3
        [2., 4., 2., 3.]   # In top 2. MLPerf: In top 2
142
143
    ])
    items = np.array([
144
145
146
147
        [2, 2, 3, 1],
        [2, 3, 4, 1],
        [2, 3, 2, 1],
        [3, 2, 1, 4],
148
    ])
149
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
150
151
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
152
153

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
154
155
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
156
157

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
158
159
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
160
161

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4)
162
163
164
165
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(5)) / 4)

166
167
    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
                                          match_mlperf=True)
168
169
    self.assertAlmostEqual(hr, 1 / 4)
    self.assertAlmostEqual(ndcg, 1 / 4)
170
171
172

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
                                          match_mlperf=True)
173
174
    self.assertAlmostEqual(hr, 2 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
175
176
177

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
                                          match_mlperf=True)
178
179
180
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)
181
182
183

    hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4,
                                          match_mlperf=True)
184
185
186
187
    self.assertAlmostEqual(hr, 4 / 4)
    self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
                                  2 * math.log(2) / math.log(4)) / 4)

188
  _BASE_END_TO_END_FLAGS = ['-batch_size', '1024', '-train_epochs', '1']
189

190
191
192
193
194
195
196
197
198
199
200
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
  def test_end_to_end_estimator(self):
    integration.run_synthetic(
        ncf_estimator_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS)

  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
  def test_end_to_end_estimator_mlperf(self):
    integration.run_synthetic(
        ncf_estimator_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS + ['-ml_perf', 'True'])
Reed's avatar
Reed committed
201

202
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
203
204
205
206
  def test_end_to_end_keras(self):
    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS +
207
        ['-distribution_strategy', 'off', '-log_steps', '100'])
Reed's avatar
Reed committed
208

209
  @mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
210
211
212
213
  def test_end_to_end_keras_mlperf(self):
    integration.run_synthetic(
        ncf_keras_main.main, tmp_root=self.get_temp_dir(), max_train=None,
        extra_flags=self._BASE_END_TO_END_FLAGS +
214
215
216
        ['-ml_perf', 'True',
         '-distribution_strategy', 'off',
         '-log_steps', '100'])
Reed's avatar
Reed committed
217

218
219
220
221

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()