ncf_keras_main.py 8.11 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
from official.recommendation import ncf_common
from official.recommendation import neumf_model
from official.recommendation import constants as rconst
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
39
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


def _keras_loss(y_true, y_pred):
  # Here we are using the exact same loss used by the estimator
  loss = tf.losses.sparse_softmax_cross_entropy(
      labels=tf.cast(y_true, tf.int32),
      logits=y_pred)
  return loss


def _get_metric_fn(params):
  """Get the metrix fn used by model compile."""
  batch_size = params["batch_size"]

  def metric_fn(y_true, y_pred):
    """Returns the in_top_k metric."""
    softmax_logits = y_pred
    logits = tf.slice(softmax_logits, [0, 1], [batch_size, 1])

    # The dup mask should be obtained from input data, but we did not yet find
    # a good way of getting it with keras, so we set it to zeros to neglect the
    # repetition correction
    dup_mask = tf.zeros([batch_size, 1])

    cross_entropy, metric_fn, in_top_k, ndcg, metric_weights = (
        neumf_model.compute_eval_loss_and_metrics_helper(
            logits,
            softmax_logits,
            dup_mask,
            params["num_neg"],
            params["match_mlperf"],
            params["use_xla_for_gpu"]))

    in_top_k = tf.cond(
        tf.keras.backend.learning_phase(),
        lambda: tf.zeros(shape=in_top_k.shape, dtype=in_top_k.dtype),
        lambda: in_top_k)

    return in_top_k

  return metric_fn


def _get_train_and_eval_data(producer, params):
  """Returns the datasets for training and evalutating."""

  train_input_fn = producer.make_input_fn(is_training=True)
  train_input_dataset = train_input_fn(params)

  def preprocess_eval_input(features):
    labels = tf.zeros_like(features[movielens.USER_COLUMN])
    return features, labels

  eval_input_fn = producer.make_input_fn(is_training=False)
  eval_input_dataset = eval_input_fn(params).map(
      lambda features: preprocess_eval_input(features))

  return train_input_dataset, eval_input_dataset


class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params['batch_size']

  user_input = tf.keras.layers.Input(
      shape=(),
      batch_size=batch_size,
      name=movielens.USER_COLUMN,
      dtype=rconst.USER_DTYPE)

  item_input = tf.keras.layers.Input(
      shape=(),
      batch_size=batch_size,
      name=movielens.ITEM_COLUMN,
      dtype=rconst.ITEM_DTYPE)

  base_model = neumf_model.construct_model(user_input, item_input, params)
  base_model_output = base_model.output

  zeros = tf.keras.layers.Lambda(
      lambda x: x * 0)(base_model_output)

  softmax_logits = tf.keras.layers.concatenate(
      [zeros, base_model_output],
      axis=-1)

  keras_model = tf.keras.Model(
      inputs=[user_input, item_input],
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
  """Run NCF training and eval with Keras."""
Shining Sun's avatar
Shining Sun committed
155
156
157
158
159
160
161
162
163
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
    tf.logging.warning(
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

Shining Sun's avatar
Shining Sun committed
164
  params = ncf_common.parse_flags(FLAGS)
165
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
166

Shining Sun's avatar
Shining Sun committed
167
168
169
170
  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
  # eval). This carries over that rounding to batch_size as well.
  params['batch_size'] = params['eval_batch_size']

Shining Sun's avatar
Shining Sun committed
171
172
173
174
175
176
177
178
179
180
  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

  keras_model = _get_keras_model(params)
  optimizer = ncf_common.get_optimizer(params)

181
182
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)

Shining Sun's avatar
Shining Sun committed
183
184
185
186
187
188
189
190
  keras_model.compile(
      loss=_keras_loss,
      metrics=[_get_metric_fn(params)],
      optimizer=optimizer)

  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(
      producer, params)

191
  history = keras_model.fit(
Shining Sun's avatar
Shining Sun committed
192
193
      train_input_dataset,
      epochs=FLAGS.train_epochs,
194
195
196
      callbacks=[
          IncrementEpochCallback(producer),
          time_callback],
Shining Sun's avatar
Shining Sun committed
197
198
199
200
201
202
203
204
205
206
207
      verbose=2)

  tf.logging.info("Training done. Start evaluating")

  eval_results = keras_model.evaluate(
      eval_input_dataset,
      steps=num_eval_steps,
      verbose=2)

  tf.logging.info("Keras evaluation is done.")

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
  stats = build_stats(history, eval_results, time_callback)
  return stats


def build_stats(history, eval_result, time_callback):
  """Normalizes and returns dictionary of stats.

    Args:
      history: Results of the training step. Supports both categorical_accuracy
        and sparse_categorical_accuracy.
      eval_output: Output of the eval step. Assumes first value is eval_loss and
        second value is accuracy_top_1.
      time_callback: Time tracking callback likely used during keras.fit.
    Returns:
      Dictionary of normalized results.
  """
  stats = {}
  if history and history.history:
    train_history = history.history
    stats['loss'] = train_history['loss'][-1]

  if eval_result:
    stats['eval_loss'] = eval_result[0]
    stats['eval_hit_rate'] = eval_result[1]

  if time_callback:
    timestamp_log = time_callback.timestamp_log
    stats['step_timestamp_log'] = timestamp_log
    stats['train_finish_time'] = time_callback.train_finish_time
    if len(timestamp_log) > 1:
      stats['avg_exp_per_second'] = (
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261


def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    if FLAGS.tpu:
      raise ValueError("NCF in Keras does not support TPU for now")
    if FLAGS.num_gpus > 1:
      raise ValueError("NCF in Keras does not support distribution strategies. "
                       "Please set num_gpus to 1")
    run_ncf(FLAGS)


if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  ncf_common.define_ncf_flags()
  absl_app.run(main)