attention_layer.py 6.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of multiheaded attention and self-attention layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from official.bert import modeling as common_layer
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


class Attention(tf.keras.layers.Layer):
  """Multi-headed attention layer."""

  def __init__(self, hidden_size, num_heads, attention_dropout):
    """Initialize Attention.

    Args:
      hidden_size: int, output dim of hidden layer.
      num_heads: int, number of heads to repeat the same attention structure.
      attention_dropout: float, dropout rate inside attention for training.
    """
    if hidden_size % num_heads:
      raise ValueError(
          "Hidden size ({}) must be divisible by the number of heads ({})."
          .format(hidden_size, num_heads))

    super(Attention, self).__init__()
    self.hidden_size = hidden_size
    self.num_heads = num_heads
    self.attention_dropout = attention_dropout

  def build(self, input_shape):
    """Builds the layer."""
    # Layers for linearly projecting the queries, keys, and values.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
50
51
52
53
54
55
56
57
58
59
60
61
    size_per_head = self.hidden_size // self.num_heads
    self.query_dense_layer = common_layer.Dense3D(
        self.num_heads, size_per_head, kernel_initializer="glorot_uniform",
        use_bias=False, name="query")
    self.key_dense_layer = common_layer.Dense3D(
        self.num_heads, size_per_head, kernel_initializer="glorot_uniform",
        use_bias=False, name="key")
    self.value_dense_layer = common_layer.Dense3D(
        self.num_heads, size_per_head, kernel_initializer="glorot_uniform",
        use_bias=False, name="value")
    self.output_dense_layer = common_layer.Dense3D(
        self.num_heads, size_per_head, kernel_initializer="glorot_uniform",
        use_bias=False, output_projection=True, name="output_transform")
62
63
64
65
66
67
68
69
70
    super(Attention, self).build(input_shape)

  def get_config(self):
    return {
        "hidden_size": self.hidden_size,
        "num_heads": self.num_heads,
        "attention_dropout": self.attention_dropout,
    }

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
72
73
  def call(self, query_input, source_input, bias, training, cache=None,
           decode_loop_step=None):
    """Apply attention mechanism to query_input and source_input.
74
75

    Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
79
80
      query_input: A tensor with shape [batch_size, length_query, hidden_size].
      source_input: A tensor with shape [batch_size, length_source,
        hidden_size].
      bias: A tensor with shape [batch_size, 1, length_query, length_source],
        the attention bias that will be added to the result of the dot product.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
81
82
83
      training: A bool, whether in training mode or not.
      cache: (Used during prediction) A dictionary with tensors containing
        results of previous attentions. The dictionary must have the items:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
85
86
87
            {"k": tensor with shape [batch_size, i, heads, dim_per_head],
             "v": tensor with shape [batch_size, i, heads, dim_per_head]}
        where i is the current decoded length for non-padded decode, or max
        sequence length for padded decode.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
88
89
      decode_loop_step: An integer, step number of the decoding loop. Used only
        for autoregressive inference on TPU.
90
91

    Returns:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
      Attention layer output with shape [batch_size, length_query, hidden_size]
93
    """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
    # Linearly project the query, key and value using different learned
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
96
97
98
99
    # projections. Splitting heads is automatically done during the linear
    # projections --> [batch_size, length, num_heads, dim_per_head].
    query = self.query_dense_layer(query_input)
    key = self.key_dense_layer(source_input)
    value = self.value_dense_layer(source_input)
100
101
102

    if cache is not None:
      # Combine cached keys and values with new keys and values.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
104
105
106
      if decode_loop_step is not None:
        cache_k_shape = cache["k"].shape.as_list()
        indices = tf.reshape(
            tf.one_hot(decode_loop_step, cache_k_shape[1], dtype=key.dtype),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
            [1, cache_k_shape[1], 1, 1])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
109
110
111
        key = cache["k"] + key * indices
        cache_v_shape = cache["v"].shape.as_list()
        indices = tf.reshape(
            tf.one_hot(decode_loop_step, cache_v_shape[1], dtype=value.dtype),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
            [1, cache_v_shape[1], 1, 1])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
114
115
116
        value = cache["v"] + value * indices
      else:
        key = tf.concat([tf.cast(cache["k"], key.dtype), key], axis=1)
        value = tf.concat([tf.cast(cache["v"], value.dtype), value], axis=1)
117
118

      # Update cache
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
120
      cache["k"] = key
      cache["v"] = value
121

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
122
123
    # Scale query to prevent the dot product between query and key from growing
    # too large.
124
    depth = (self.hidden_size // self.num_heads)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
    query *= depth ** -0.5
126
127

    # Calculate dot product attention
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
    logits = tf.einsum("BTNH,BFNH->BNFT", key, query)
129
    logits += bias
130
131
132
133
    # Note that softmax internally performs math operations using float32
    # for numeric stability. When training with float16, we keep the input
    # and output in float16 for better performance.
    weights = tf.nn.softmax(logits, name="attention_weights")
134
135
    if training:
      weights = tf.nn.dropout(weights, rate=self.attention_dropout)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
    attention_output = tf.einsum("BNFT,BTNH->BFNH", weights, value)
137

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
138
139
    # Run the outputs through another linear projection layer. Recombining heads
    # is automatically done --> [batch_size, length, hidden_size]
140
141
142
143
144
145
146
    attention_output = self.output_dense_layer(attention_output)
    return attention_output


class SelfAttention(Attention):
  """Multiheaded self-attention layer."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
147
148
149
150
  def call(self, query_input, bias, training, cache=None,
           decode_loop_step=None):
    return super(SelfAttention, self).call(
        query_input, query_input, bias, training, cache, decode_loop_step)