preprocessing_test.py 5.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for preprocessing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools
import tempfile

import tensorflow as tf  # pylint: disable=g-bad-import-order

import coords
import features
import go
import model_params
import numpy as np
import preprocessing
import utils_test

tf.logging.set_verbosity(tf.logging.ERROR)

TEST_SGF = '''(;CA[UTF-8]SZ[9]PB[Murakawa Daisuke]PW[Iyama Yuta]KM[6.5]
           HA[0]RE[W+1.5]GM[1];B[fd];W[cf])'''


class TestPreprocessing(utils_test.MiniGoUnitTest):

  def create_random_data(self, num_examples):
    raw_data = []
    for _ in range(num_examples):
      feature = np.random.random([
          utils_test.BOARD_SIZE, utils_test.BOARD_SIZE,
          features.NEW_FEATURES_PLANES]).astype(np.uint8)
      pi = np.random.random([utils_test.BOARD_SIZE * utils_test.BOARD_SIZE
                             + 1]).astype(np.float32)
      value = np.random.random()
      raw_data.append((feature, pi, value))
    return raw_data

  def extract_data(self, tf_record, filter_amount=1):
    pos_tensor, label_tensors = preprocessing.get_input_tensors(
        model_params.DummyMiniGoParams(), 1, [tf_record], num_repeats=1,
        shuffle_records=False, shuffle_examples=False,
        filter_amount=filter_amount)
    recovered_data = []
    with tf.Session() as sess:
      while True:
        try:
          pos_value, label_values = sess.run([pos_tensor, label_tensors])
          recovered_data.append((
              pos_value,
              label_values['pi_tensor'],
              label_values['value_tensor']))
        except tf.errors.OutOfRangeError:
          break
    return recovered_data

  def assertEqualData(self, data1, data2):
    # Assert that two data are equal, where both are of form:
    # data = List<Tuple<feature_array, pi_array, value>>
    self.assertEqual(len(data1), len(data2))
    for datum1, datum2 in zip(data1, data2):
      # feature
      self.assertEqualNPArray(datum1[0], datum2[0])
      # pi
      self.assertEqualNPArray(datum1[1], datum2[1])
      # value
      self.assertEqual(datum1[2], datum2[2])

  def test_serialize_round_trip(self):
    np.random.seed(1)
    raw_data = self.create_random_data(10)
    tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

    with tempfile.NamedTemporaryFile() as f:
      preprocessing.write_tf_examples(f.name, tfexamples)
      recovered_data = self.extract_data(f.name)

    self.assertEqualData(raw_data, recovered_data)

  def test_filter(self):
    raw_data = self.create_random_data(100)
    tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

    with tempfile.NamedTemporaryFile() as f:
      preprocessing.write_tf_examples(f.name, tfexamples)
      recovered_data = self.extract_data(f.name, filter_amount=.05)

    self.assertLess(len(recovered_data), 50)

  def test_serialize_round_trip_no_parse(self):
    np.random.seed(1)
    raw_data = self.create_random_data(10)
    tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data)))

    with tempfile.NamedTemporaryFile() as start_file, \
        tempfile.NamedTemporaryFile() as rewritten_file:
      preprocessing.write_tf_examples(start_file.name, tfexamples)
      # We want to test that the rewritten, shuffled file contains correctly
      # serialized tf.Examples.
      batch_size = 4
      batches = list(preprocessing.shuffle_tf_examples(
          1000, batch_size, [start_file.name]))
      # 2 batches of 4, 1 incomplete batch of 2.
      self.assertEqual(len(batches), 3)

      # concatenate list of lists into one list
      all_batches = list(itertools.chain.from_iterable(batches))

      for _ in batches:
        preprocessing.write_tf_examples(
            rewritten_file.name, all_batches, serialize=False)

      original_data = self.extract_data(start_file.name)
      recovered_data = self.extract_data(rewritten_file.name)

    # stuff is shuffled, so sort before checking equality
    def sort_key(nparray_tuple):
      return nparray_tuple[2]
    original_data = sorted(original_data, key=sort_key)
    recovered_data = sorted(recovered_data, key=sort_key)

    self.assertEqualData(original_data, recovered_data)

  def test_make_dataset_from_sgf(self):
    with tempfile.NamedTemporaryFile() as sgf_file, \
        tempfile.NamedTemporaryFile() as record_file:
      sgf_file.write(TEST_SGF.encode('utf8'))
      sgf_file.seek(0)
      preprocessing.make_dataset_from_sgf(
          utils_test.BOARD_SIZE, sgf_file.name, record_file.name)
      recovered_data = self.extract_data(record_file.name)
    start_pos = go.Position(utils_test.BOARD_SIZE)
    first_move = coords.from_sgf('fd')
    next_pos = start_pos.play_move(first_move)
    second_move = coords.from_sgf('cf')
    expected_data = [
        (
            features.extract_features(utils_test.BOARD_SIZE, start_pos),
            preprocessing._one_hot(utils_test.BOARD_SIZE, coords.to_flat(
                utils_test.BOARD_SIZE, first_move)), -1
        ),
        (
            features.extract_features(utils_test.BOARD_SIZE, next_pos),
            preprocessing._one_hot(utils_test.BOARD_SIZE, coords.to_flat(
                utils_test.BOARD_SIZE, second_move)), -1
        )
    ]
    self.assertEqualData(expected_data, recovered_data)


if __name__ == '__main__':
  tf.test.main()