export_tfhub.py 5.38 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A script to export the BERT core model as a TF-Hub SavedModel."""

Hongkun Yu's avatar
Hongkun Yu committed
17
# Import libraries
18
19
from absl import app
from absl import flags
20
from absl import logging
21
import tensorflow as tf
22
from typing import Text
23
from official.nlp.bert import bert_models
24
from official.nlp.bert import configs
25
26
27
28
29
30
31

FLAGS = flags.FLAGS

flags.DEFINE_string("bert_config_file", None,
                    "Bert configuration file to define core bert layers.")
flags.DEFINE_string("model_checkpoint_path", None,
                    "File path to TF model checkpoint.")
Chen Chen's avatar
Chen Chen committed
32
flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.")
Hongkun Yu's avatar
Hongkun Yu committed
33
34
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")
35
36
37
38
39
40
flags.DEFINE_bool(
    "do_lower_case", None, "Whether to lowercase. If None, "
    "do_lower_case will be enabled if 'uncased' appears in the "
    "name of --vocab_file")
flags.DEFINE_enum("model_type", "encoder", ["encoder", "squad"],
                  "What kind of BERT model to export.")
41
42


43
def create_bert_model(bert_config: configs.BertConfig) -> tf.keras.Model:
44
45
46
  """Creates a BERT keras core model from BERT configuration.

  Args:
47
    bert_config: A `BertConfig` to create the core model.
48
49
50
51
52
53
54
55
56
57
58

  Returns:
    A keras model.
  """
  # Adds input layers just as placeholders.
  input_word_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name="input_word_ids")
  input_mask = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name="input_mask")
  input_type_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name="input_type_ids")
Chen Chen's avatar
Chen Chen committed
59
  transformer_encoder = bert_models.get_transformer_encoder(
Zongwei Zhou's avatar
Zongwei Zhou committed
60
      bert_config, sequence_length=None)
Chen Chen's avatar
Chen Chen committed
61
62
63
64
65
66
67
  sequence_output, pooled_output = transformer_encoder(
      [input_word_ids, input_mask, input_type_ids])
  # To keep consistent with legacy hub modules, the outputs are
  # "pooled_output" and "sequence_output".
  return tf.keras.Model(
      inputs=[input_word_ids, input_mask, input_type_ids],
      outputs=[pooled_output, sequence_output]), transformer_encoder
68
69


70
def export_bert_tfhub(bert_config: configs.BertConfig,
71
72
73
74
                      model_checkpoint_path: Text,
                      hub_destination: Text,
                      vocab_file: Text,
                      do_lower_case: bool = None):
75
  """Restores a tf.keras.Model and saves for TF-Hub."""
76
77
78
79
80
81
  # If do_lower_case is not explicit, default to checking whether "uncased" is
  # in the vocab file name
  if do_lower_case is None:
    do_lower_case = "uncased" in vocab_file
    logging.info("Using do_lower_case=%s based on name of vocab_file=%s",
                 do_lower_case, vocab_file)
Chen Chen's avatar
Chen Chen committed
82
  core_model, encoder = create_bert_model(bert_config)
83
84
85
  checkpoint = tf.train.Checkpoint(
      model=encoder,  # Legacy checkpoints.
      encoder=encoder)
André Susano Pinto's avatar
André Susano Pinto committed
86
  checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched()
87
  core_model.vocab_file = tf.saved_model.Asset(vocab_file)
88
  core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False)
89
90
91
  core_model.save(hub_destination, include_optimizer=False, save_format="tf")


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def export_bert_squad_tfhub(bert_config: configs.BertConfig,
                            model_checkpoint_path: Text,
                            hub_destination: Text,
                            vocab_file: Text,
                            do_lower_case: bool = None):
  """Restores a tf.keras.Model for BERT with SQuAD and saves for TF-Hub."""
  # If do_lower_case is not explicit, default to checking whether "uncased" is
  # in the vocab file name
  if do_lower_case is None:
    do_lower_case = "uncased" in vocab_file
    logging.info("Using do_lower_case=%s based on name of vocab_file=%s",
                 do_lower_case, vocab_file)
  span_labeling, _ = bert_models.squad_model(bert_config, max_seq_length=None)
  checkpoint = tf.train.Checkpoint(model=span_labeling)
  checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched()
  span_labeling.vocab_file = tf.saved_model.Asset(vocab_file)
  span_labeling.do_lower_case = tf.Variable(do_lower_case, trainable=False)
  span_labeling.save(hub_destination, include_optimizer=False, save_format="tf")


112
def main(_):
113
  bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
114
115
116
117
118
119
120
121
122
  if FLAGS.model_type == "encoder":
    export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path,
                      FLAGS.export_path, FLAGS.vocab_file, FLAGS.do_lower_case)
  elif FLAGS.model_type == "squad":
    export_bert_squad_tfhub(bert_config, FLAGS.model_checkpoint_path,
                            FLAGS.export_path, FLAGS.vocab_file,
                            FLAGS.do_lower_case)
  else:
    raise ValueError("Unsupported model_type %s." % FLAGS.model_type)
123
124
125
126


if __name__ == "__main__":
  app.run(main)