model_builder.py 40.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17

18
import functools
19
20
21
22
23
24
25
26
27
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
28
from object_detection.core import balanced_positive_negative_sampler as sampler
29
from object_detection.core import post_processing
30
from object_detection.core import target_assigner
31
32
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
33
34
35
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
36
from object_detection.predictors.heads import mask_head
37
from object_detection.protos import losses_pb2
38
from object_detection.protos import model_pb2
39
from object_detection.utils import label_map_util
40
from object_detection.utils import ops
41
from object_detection.utils import spatial_transform_ops as spatial_ops
42
43
44
45
46
47
48
49
50
51
from object_detection.utils import tf_version

## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
  from object_detection.models import center_net_hourglass_feature_extractor
  from object_detection.models import center_net_resnet_feature_extractor
52
  from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
  from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
  from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
  from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
  from object_detection.predictors import rfcn_keras_box_predictor

if tf_version.is_tf1():
  from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
  from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
  from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
  from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
  from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
  from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
  from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
  from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
  from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
  from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
82
83
84
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
85
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
  from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top

if tf_version.is_tf2():
  SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
      'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
      'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
      'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
      'ssd_resnet50_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
      'ssd_resnet101_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
      'ssd_resnet152_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
  }
103

104
105
106
107
108
109
110
111
112
113
  FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_resnet50_keras':
          frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
      'faster_rcnn_resnet101_keras':
          frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
      'faster_rcnn_resnet152_keras':
          frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
      'faster_rcnn_inception_resnet_v2_keras':
      frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
  }
114

115
116
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
      'resnet_v2_50': center_net_resnet_feature_extractor.resnet_v2_50,
117
118
119
120
121
      'resnet_v2_101': center_net_resnet_feature_extractor.resnet_v2_101,
      'resnet_v1_50_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
      'resnet_v1_101_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
122
123
      'hourglass_104': center_net_hourglass_feature_extractor.hourglass_104,
  }
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  FEATURE_EXTRACTOR_MAPS = [
      CENTER_NET_EXTRACTOR_FUNCTION_MAP,
      FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
      SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
  ]

if tf_version.is_tf1():
  SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_inception_v2':
          SSDInceptionV2FeatureExtractor,
      'ssd_inception_v3':
          SSDInceptionV3FeatureExtractor,
      'ssd_mobilenet_v1':
          SSDMobileNetV1FeatureExtractor,
      'ssd_mobilenet_v1_fpn':
          SSDMobileNetV1FpnFeatureExtractor,
      'ssd_mobilenet_v1_ppn':
          SSDMobileNetV1PpnFeatureExtractor,
      'ssd_mobilenet_v2':
          SSDMobileNetV2FeatureExtractor,
      'ssd_mobilenet_v2_fpn':
          SSDMobileNetV2FpnFeatureExtractor,
      'ssd_mobilenet_v2_mnasfpn':
          SSDMobileNetV2MnasFPNFeatureExtractor,
      'ssd_mobilenet_v3_large':
          SSDMobileNetV3LargeFeatureExtractor,
      'ssd_mobilenet_v3_small':
          SSDMobileNetV3SmallFeatureExtractor,
      'ssd_mobilenet_edgetpu':
          SSDMobileNetEdgeTPUFeatureExtractor,
      'ssd_resnet50_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
      'ssd_resnet101_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
      'ssd_resnet152_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
      'ssd_resnet50_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
      'ssd_resnet101_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
      'ssd_resnet152_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
      'embedded_ssd_mobilenet_v1':
          EmbeddedSSDMobileNetV1FeatureExtractor,
      'ssd_pnasnet':
          SSDPNASNetFeatureExtractor,
171
172
173
174
175
176
177
178
      'ssd_mobiledet_cpu':
          SSDMobileDetCPUFeatureExtractor,
      'ssd_mobiledet_dsp':
          SSDMobileDetDSPFeatureExtractor,
      'ssd_mobiledet_edgetpu':
          SSDMobileDetEdgeTPUFeatureExtractor,
      'ssd_mobiledet_gpu':
          SSDMobileDetGPUFeatureExtractor,
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  }

  FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_nas':
      frcnn_nas.FasterRCNNNASFeatureExtractor,
      'faster_rcnn_pnas':
      frcnn_pnas.FasterRCNNPNASFeatureExtractor,
      'faster_rcnn_inception_resnet_v2':
      frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
      'faster_rcnn_inception_v2':
      frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
      'faster_rcnn_resnet50':
      frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
      'faster_rcnn_resnet101':
      frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
      'faster_rcnn_resnet152':
      frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
  }

  FEATURE_EXTRACTOR_MAPS = [
      SSD_FEATURE_EXTRACTOR_CLASS_MAP,
      FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP
  ]
202

203
204
205
206
207
208
209

def _check_feature_extractor_exists(feature_extractor_type):
  feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
  if feature_extractor_type not in feature_extractors:
    raise ValueError('{} is not supported. See `model_builder.py` for features '
                     'extractors compatible with different versions of '
                     'Tensorflow'.format(feature_extractor_type))
210

211

212
213
214
def _build_ssd_feature_extractor(feature_extractor_config,
                                 is_training,
                                 freeze_batchnorm,
215
                                 reuse_weights=None):
216
217
218
219
220
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
221
222
223
224
    freeze_batchnorm: Whether to freeze batch norm parameters during
      training or not. When training with a small batch size (e.g. 1), it is
      desirable to freeze batch norm update and use pretrained batch norm
      params.
225
226
227
228
229
230
231
232
233
234
235
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
236
  pad_to_multiple = feature_extractor_config.pad_to_multiple
237
  use_explicit_padding = feature_extractor_config.use_explicit_padding
238
  use_depthwise = feature_extractor_config.use_depthwise
239

240
241
  is_keras = tf_version.is_tf2()
  if is_keras:
242
243
244
245
246
    conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
        feature_extractor_config.conv_hyperparams)
  else:
    conv_hyperparams = hyperparams_builder.build(
        feature_extractor_config.conv_hyperparams, is_training)
247
248
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
249

250
  if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
251
252
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

253
  if is_keras:
254
255
256
257
    feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
        feature_type]
  else:
    feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

275
276
277
278
279
280
  if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
    kwargs.update({
        'replace_preprocessor_with_placeholder':
            feature_extractor_config.replace_preprocessor_with_placeholder
    })

pkulzc's avatar
pkulzc committed
281
282
283
  if feature_extractor_config.HasField('num_layers'):
    kwargs.update({'num_layers': feature_extractor_config.num_layers})

284
  if is_keras:
285
286
287
288
289
290
291
292
293
294
295
    kwargs.update({
        'conv_hyperparams': conv_hyperparams,
        'inplace_batchnorm_update': False,
        'freeze_batchnorm': freeze_batchnorm
    })
  else:
    kwargs.update({
        'conv_hyperparams_fn': conv_hyperparams,
        'reuse_weights': reuse_weights,
    })

296

297
298
  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
299
300
301
302
303
304
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
305
306
    })

307

308
  return feature_extractor_class(**kwargs)
309
310


311
def _build_ssd_model(ssd_config, is_training, add_summaries):
312
313
314
315
316
317
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
318
    add_summaries: Whether to add tf summaries in the model.
319
320
  Returns:
    SSDMetaArch based on the config.
321

322
323
324
325
326
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes
327
  _check_feature_extractor_exists(ssd_config.feature_extractor.type)
328
329

  # Feature extractor
330
  feature_extractor = _build_ssd_feature_extractor(
331
      feature_extractor_config=ssd_config.feature_extractor,
332
      freeze_batchnorm=ssd_config.freeze_batchnorm,
333
      is_training=is_training)
334
335
336
337
338

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
339
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
340
  negative_class_weight = ssd_config.negative_class_weight
341
342
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
343
344
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
345
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
346
347
348
349
350
351
352
353
354
355
356
357
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
358
359
360
361
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
362
363
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
364
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
365
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
366
367
368
369

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
370
371
372
373
374

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
375
      negative_class_weight=negative_class_weight)
376

377
  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
378
  kwargs = {}
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
396
      target_assigner_instance=target_assigner_instance,
397
      add_summaries=add_summaries,
398
399
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
400
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
401
      add_background_class=ssd_config.add_background_class,
402
      explicit_background_class=ssd_config.explicit_background_class,
403
      random_example_sampler=random_example_sampler,
404
405
406
407
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
408
409
      return_raw_detections_during_predict=(
          ssd_config.return_raw_detections_during_predict),
410
      **kwargs)
411
412
413


def _build_faster_rcnn_feature_extractor(
414
    feature_extractor_config, is_training, reuse_weights=True,
415
    inplace_batchnorm_update=False):
416
417
418
419
420
421
422
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
423
424
425
426
427
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
428
429
430
431
432
433
434

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
435
436
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
437
438
439
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
440
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
441
442
443
444
445
446
447

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
448
      is_training, first_stage_features_stride,
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
      batch_norm_trainable, reuse_weights=reuse_weights)


def _build_faster_rcnn_keras_feature_extractor(
    feature_extractor_config, is_training,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable)
488
489


490
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
491
492
493
494
495
496
497
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
498
      desired FasterRCNNMetaArch or RFCNMetaArch.
499
    is_training: True if this model is being built for training purposes.
500
    add_summaries: Whether to add tf summaries in the model.
501
502
503

  Returns:
    FasterRCNNMetaArch based on the config.
504

505
506
507
508
509
510
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
511
512
  _check_feature_extractor_exists(frcnn_config.feature_extractor.type)
  is_keras = tf_version.is_tf2()
513
514
515
516
517
518
519
520
521

  if is_keras:
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
522

523
  number_of_stages = frcnn_config.number_of_stages
524
525
526
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

527
528
529
530
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
531
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
532
533
534
535
536
537
538
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
539
540
541
542
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
543
544
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
545
546
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
547
548
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
549
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
550
551
552
553
554
555
556
557
558
559
560
561
562
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
Pooya Davoodi's avatar
Pooya Davoodi committed
563
      use_static_shapes=use_static_shapes,
564
      use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
Pooya Davoodi's avatar
Pooya Davoodi committed
565
      use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
566
567
568
569
570
571
572
573
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

574
575
576
577
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
593
  second_stage_batch_size = frcnn_config.second_stage_batch_size
594
595
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
596
597
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
598
599
600
601
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
602
603
604
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
605
606
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
607
608
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
609
610
611
612
613
614
615
616

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

617
  crop_and_resize_fn = (
618
619
620
      spatial_ops.multilevel_matmul_crop_and_resize
      if frcnn_config.use_matmul_crop_and_resize
      else spatial_ops.multilevel_native_crop_and_resize)
621
622
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
623

624
  common_kwargs = {
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
      'is_training':
          is_training,
      'num_classes':
          num_classes,
      'image_resizer_fn':
          image_resizer_fn,
      'feature_extractor':
          feature_extractor,
      'number_of_stages':
          number_of_stages,
      'first_stage_anchor_generator':
          first_stage_anchor_generator,
      'first_stage_target_assigner':
          first_stage_target_assigner,
      'first_stage_atrous_rate':
          first_stage_atrous_rate,
641
      'first_stage_box_predictor_arg_scope_fn':
642
          first_stage_box_predictor_arg_scope_fn,
643
      'first_stage_box_predictor_kernel_size':
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
          first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth':
          first_stage_box_predictor_depth,
      'first_stage_minibatch_size':
          first_stage_minibatch_size,
      'first_stage_sampler':
          first_stage_sampler,
      'first_stage_non_max_suppression_fn':
          first_stage_non_max_suppression_fn,
      'first_stage_max_proposals':
          first_stage_max_proposals,
      'first_stage_localization_loss_weight':
          first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight':
          first_stage_obj_loss_weight,
      'second_stage_target_assigner':
          second_stage_target_assigner,
      'second_stage_batch_size':
          second_stage_batch_size,
      'second_stage_sampler':
          second_stage_sampler,
665
      'second_stage_non_max_suppression_fn':
666
667
668
          second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn':
          second_stage_score_conversion_fn,
669
      'second_stage_localization_loss_weight':
670
          second_stage_localization_loss_weight,
671
      'second_stage_classification_loss':
672
          second_stage_classification_loss,
673
      'second_stage_classification_loss_weight':
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
          second_stage_classification_loss_weight,
      'hard_example_miner':
          hard_example_miner,
      'add_summaries':
          add_summaries,
      'crop_and_resize_fn':
          crop_and_resize_fn,
      'clip_anchors_to_image':
          clip_anchors_to_image,
      'use_static_shapes':
          use_static_shapes,
      'resize_masks':
          frcnn_config.resize_masks,
      'return_raw_detections_during_predict':
          frcnn_config.return_raw_detections_during_predict,
      'output_final_box_features':
          frcnn_config.output_final_box_features
691
  }
692

693
694
695
696
697
  if ((not is_keras and isinstance(second_stage_box_predictor,
                                   rfcn_box_predictor.RfcnBoxPredictor)) or
      (is_keras and
       isinstance(second_stage_box_predictor,
                  rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
698
699
700
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
  elif frcnn_config.HasField('context_config'):
    context_config = frcnn_config.context_config
    common_kwargs.update({
        'attention_bottleneck_dimension':
            context_config.attention_bottleneck_dimension,
        'attention_temperature':
            context_config.attention_temperature
    })
    return context_rcnn_meta_arch.ContextRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)
717
718
719
720
721
722
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
723
724
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
725
        **common_kwargs)
726
727
728
729
730
731
732
733
734

EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}


def _build_experimental_model(config, is_training, add_summaries=True):
  return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
      is_training, add_summaries)

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0


def keypoint_proto_to_params(kp_config, keypoint_map_dict):
  """Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
  label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]

  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(kp_config.loss))

  keypoint_indices = [
      keypoint.id for keypoint in label_map_item.keypoints
  ]
  keypoint_labels = [
      keypoint.label for keypoint in label_map_item.keypoints
  ]
  keypoint_std_dev_dict = {
      label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
  }
  if kp_config.keypoint_label_to_std:
    for label, value in kp_config.keypoint_label_to_std.items():
      keypoint_std_dev_dict[label] = value
  keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
  return center_net_meta_arch.KeypointEstimationParams(
      task_name=kp_config.task_name,
      class_id=label_map_item.id - CLASS_ID_OFFSET,
      keypoint_indices=keypoint_indices,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      keypoint_labels=keypoint_labels,
      keypoint_std_dev=keypoint_std_dev,
      task_loss_weight=kp_config.task_loss_weight,
      keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
      keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
      keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
      heatmap_bias_init=kp_config.heatmap_bias_init,
      keypoint_candidate_score_threshold=(
          kp_config.keypoint_candidate_score_threshold),
      num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
      peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
      unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
      box_scale=kp_config.box_scale,
      candidate_search_scale=kp_config.candidate_search_scale,
783
784
785
      candidate_ranking_mode=kp_config.candidate_ranking_mode,
      offset_peak_radius=kp_config.offset_peak_radius,
      per_keypoint_offset=kp_config.per_keypoint_offset)
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819


def object_detection_proto_to_params(od_config):
  """Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(od_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectDetectionParams(
      localization_loss=localization_loss,
      scale_loss_weight=od_config.scale_loss_weight,
      offset_loss_weight=od_config.offset_loss_weight,
      task_loss_weight=od_config.task_loss_weight)


def object_center_proto_to_params(oc_config):
  """Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(oc_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectCenterParams(
      classification_loss=classification_loss,
      object_center_loss_weight=oc_config.object_center_loss_weight,
      heatmap_bias_init=oc_config.heatmap_bias_init,
      min_box_overlap_iou=oc_config.min_box_overlap_iou,
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
      max_box_predictions=oc_config.max_box_predictions,
      use_labeled_classes=oc_config.use_labeled_classes)


def mask_proto_to_params(mask_config):
  """Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(mask_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.MaskParams(
      classification_loss=classification_loss,
      task_loss_weight=mask_config.task_loss_weight,
      mask_height=mask_config.mask_height,
      mask_width=mask_config.mask_width,
      score_threshold=mask_config.score_threshold,
      heatmap_bias_init=mask_config.heatmap_bias_init)
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887


def _build_center_net_model(center_net_config, is_training, add_summaries):
  """Build a CenterNet detection model.

  Args:
    center_net_config: A CenterNet proto object with model configuration.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    CenterNetMetaArch based on the config.

  """

  image_resizer_fn = image_resizer_builder.build(
      center_net_config.image_resizer)
  _check_feature_extractor_exists(center_net_config.feature_extractor.type)
  feature_extractor = _build_center_net_feature_extractor(
      center_net_config.feature_extractor)
  object_center_params = object_center_proto_to_params(
      center_net_config.object_center_params)

  object_detection_params = None
  if center_net_config.HasField('object_detection_task'):
    object_detection_params = object_detection_proto_to_params(
        center_net_config.object_detection_task)

  keypoint_params_dict = None
  if center_net_config.keypoint_estimation_task:
    label_map_proto = label_map_util.load_labelmap(
        center_net_config.keypoint_label_map_path)
    keypoint_map_dict = {
        item.name: item for item in label_map_proto.item if item.keypoints
    }
    keypoint_params_dict = {}
    keypoint_class_id_set = set()
    all_keypoint_indices = []
    for task in center_net_config.keypoint_estimation_task:
      kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
      keypoint_params_dict[task.task_name] = kp_params
      all_keypoint_indices.extend(kp_params.keypoint_indices)
      if kp_params.class_id in keypoint_class_id_set:
        raise ValueError(('Multiple keypoint tasks map to the same class id is '
                          'not allowed: %d' % kp_params.class_id))
      else:
        keypoint_class_id_set.add(kp_params.class_id)
    if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
      raise ValueError('Some keypoint indices are used more than once.')
888
889
890
891
892

  mask_params = None
  if center_net_config.HasField('mask_estimation_task'):
    mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)

893
894
895
896
897
898
899
900
  return center_net_meta_arch.CenterNetMetaArch(
      is_training=is_training,
      add_summaries=add_summaries,
      num_classes=center_net_config.num_classes,
      feature_extractor=feature_extractor,
      image_resizer_fn=image_resizer_fn,
      object_center_params=object_center_params,
      object_detection_params=object_detection_params,
901
902
      keypoint_params_dict=keypoint_params_dict,
      mask_params=mask_params)
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920


def _build_center_net_feature_extractor(
    feature_extractor_config):
  """Build a CenterNet feature extractor from the given config."""

  if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
    raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
                     .format(feature_extractor_config.type))

  return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
      channel_means=list(feature_extractor_config.channel_means),
      channel_stds=list(feature_extractor_config.channel_stds),
      bgr_ordering=feature_extractor_config.bgr_ordering
  )


META_ARCH_BUILDER_MAP = {
921
922
    'ssd': _build_ssd_model,
    'faster_rcnn': _build_faster_rcnn_model,
923
924
    'experimental_model': _build_experimental_model,
    'center_net': _build_center_net_model
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
}


def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')

  meta_architecture = model_config.WhichOneof('model')

947
  if meta_architecture not in META_ARCH_BUILDER_MAP:
948
949
    raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
  else:
950
    build_func = META_ARCH_BUILDER_MAP[meta_architecture]
951
952
    return build_func(getattr(model_config, meta_architecture), is_training,
                      add_summaries)