cls_head.py 5.31 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""A Classification head layer which is common used with sequence encoders."""

import tensorflow as tf

from official.modeling import tf_utils


class ClassificationHead(tf.keras.layers.Layer):
  """Pooling head for sentence-level classification tasks."""

  def __init__(self,
               inner_dim,
               num_classes,
               cls_token_idx=0,
               activation="tanh",
               dropout_rate=0.0,
               initializer="glorot_uniform",
               **kwargs):
    """Initializes the `ClassificationHead`.

    Args:
      inner_dim: The dimensionality of inner projection layer.
      num_classes: Number of output classes.
      cls_token_idx: The index inside the sequence to pool.
      activation: Dense layer activation.
      dropout_rate: Dropout probability.
      initializer: Initializer for dense layer kernels.
      **kwargs: Keyword arguments.
    """
Hongkun Yu's avatar
Hongkun Yu committed
44
    super().__init__(**kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    self.dropout_rate = dropout_rate
    self.inner_dim = inner_dim
    self.num_classes = num_classes
    self.activation = tf_utils.get_activation(activation)
    self.initializer = tf.keras.initializers.get(initializer)
    self.cls_token_idx = cls_token_idx

    self.dense = tf.keras.layers.Dense(
        units=inner_dim,
        activation=self.activation,
        kernel_initializer=self.initializer,
        name="pooler_dense")
    self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
    self.out_proj = tf.keras.layers.Dense(
        units=num_classes, kernel_initializer=self.initializer, name="logits")

  def call(self, features):
    x = features[:, self.cls_token_idx, :]  # take <CLS> token.
    x = self.dense(x)
    x = self.dropout(x)
    x = self.out_proj(x)
    return x

  def get_config(self):
    config = {
Hongkun Yu's avatar
Hongkun Yu committed
70
        "cls_token_idx": self.cls_token_idx,
Hongkun Yu's avatar
Hongkun Yu committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        "dropout_rate": self.dropout_rate,
        "num_classes": self.num_classes,
        "inner_dim": self.inner_dim,
        "activation": tf.keras.activations.serialize(self.activation),
        "initializer": tf.keras.initializers.serialize(self.initializer),
    }
    config.update(super(ClassificationHead, self).get_config())
    return config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def checkpoint_items(self):
    return {self.dense.name: self.dense}
Hongkun Yu's avatar
Hongkun Yu committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159


class MultiClsHeads(tf.keras.layers.Layer):
  """Pooling heads sharing the same pooling stem."""

  def __init__(self,
               inner_dim,
               cls_list,
               cls_token_idx=0,
               activation="tanh",
               dropout_rate=0.0,
               initializer="glorot_uniform",
               **kwargs):
    """Initializes the `MultiClsHeads`.

    Args:
      inner_dim: The dimensionality of inner projection layer.
      cls_list: a list of pairs of (classification problem name and the numbers
        of classes.
      cls_token_idx: The index inside the sequence to pool.
      activation: Dense layer activation.
      dropout_rate: Dropout probability.
      initializer: Initializer for dense layer kernels.
      **kwargs: Keyword arguments.
    """
    super().__init__(**kwargs)
    self.dropout_rate = dropout_rate
    self.inner_dim = inner_dim
    self.cls_list = cls_list
    self.activation = tf_utils.get_activation(activation)
    self.initializer = tf.keras.initializers.get(initializer)
    self.cls_token_idx = cls_token_idx

    self.dense = tf.keras.layers.Dense(
        units=inner_dim,
        activation=self.activation,
        kernel_initializer=self.initializer,
        name="pooler_dense")
    self.dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
    self.out_projs = []
    for name, num_classes in cls_list:
      self.out_projs.append(
          tf.keras.layers.Dense(
              units=num_classes, kernel_initializer=self.initializer,
              name=name))

  def call(self, features):
    x = features[:, self.cls_token_idx, :]  # take <CLS> token.
    x = self.dense(x)
    x = self.dropout(x)
    outputs = {}
    for proj_layer in self.out_projs:
      outputs[proj_layer.name] = proj_layer(x)
    return outputs

  def get_config(self):
    config = {
        "dropout_rate": self.dropout_rate,
        "cls_token_idx": self.cls_token_idx,
        "cls_list": self.cls_list,
        "inner_dim": self.inner_dim,
        "activation": tf.keras.activations.serialize(self.activation),
        "initializer": tf.keras.initializers.serialize(self.initializer),
    }
    config.update(super().get_config())
    return config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def checkpoint_items(self):
160
161
162
    items = {self.dense.name: self.dense}
    items.update({v.name: v for v in self.out_projs})
    return items