run_distillation.py 5.36 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
"""Creating the task and start trainer."""

import pprint

from absl import app
from absl import flags
from absl import logging
import gin
from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import config_definitions as cfg
from official.core import train_utils
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling import performance
from official.modeling.fast_training.progressive import train_lib
from official.modeling.fast_training.progressive import trainer as prog_trainer_lib
from official.nlp.data import pretrain_dataloader
from official.projects.mobilebert import distillation


FLAGS = flags.FLAGS

optimization_config = optimization.OptimizationConfig(
    optimizer=optimization.OptimizerConfig(
        type='lamb',
        lamb=optimization.LAMBConfig(
            weight_decay_rate=0.01,
            exclude_from_weight_decay=['LayerNorm', 'bias', 'norm'],
            clipnorm=1.0)),
    learning_rate=optimization.LrConfig(
        type='polynomial',
        polynomial=optimization.PolynomialLrConfig(
            initial_learning_rate=1.5e-3,
            decay_steps=10000,
            end_learning_rate=1.5e-3)),
    warmup=optimization.WarmupConfig(
        type='linear',
        linear=optimization.LinearWarmupConfig(warmup_learning_rate=0)))


# copy from progressive/utils.py due to the private visibility issue.
def config_override(params, flags_obj):
  """Override ExperimentConfig according to flags."""
  # Change runtime.tpu to the real tpu.
  params.override({
      'runtime': {
          'tpu': flags_obj.tpu,
      }
  })

  # Get the first level of override from `--config_file`.
  #   `--config_file` is typically used as a template that specifies the common
  #   override for a particular experiment.
  for config_file in flags_obj.config_file or []:
    params = hyperparams.override_params_dict(
        params, config_file, is_strict=True)

  # Get the second level of override from `--params_override`.
  #   `--params_override` is typically used as a further override over the
  #   template. For example, one may define a particular template for training
  #   ResNet50 on ImageNet in a config file and pass it via `--config_file`,
  #   then define different learning rates and pass it via `--params_override`.
  if flags_obj.params_override:
    params = hyperparams.override_params_dict(
        params, flags_obj.params_override, is_strict=True)

  params.validate()
  params.lock()

  pp = pprint.PrettyPrinter()
  logging.info('Final experiment parameters: %s', pp.pformat(params.as_dict()))

  model_dir = flags_obj.model_dir
  if 'train' in flags_obj.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  return params


def get_exp_config():
  """Get ExperimentConfig."""
  params = cfg.ExperimentConfig(
      task=distillation.BertDistillationTaskConfig(
          train_data=pretrain_dataloader.BertPretrainDataConfig(),
          validation_data=pretrain_dataloader.BertPretrainDataConfig(
              is_training=False)),
      trainer=prog_trainer_lib.ProgressiveTrainerConfig(
          progressive=distillation.BertDistillationProgressiveConfig(),
          optimizer_config=optimization_config,
          train_steps=740000,
          checkpoint_interval=20000))

  return config_override(params, FLAGS)


def main(_):
  logging.info('Parsing config files...')
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = get_exp_config()

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)

  with distribution_strategy.scope():
    task = distillation.BertDistillationTask(
        strategy=distribution_strategy,
        progressive=params.trainer.progressive,
        optimizer_config=params.trainer.optimizer_config,
        task_config=params.task)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=FLAGS.model_dir)

if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)