rcnn.py 4.9 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Mask R-CNN configuration definition."""
import os

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling.optimization.configs import optimization_config
from official.projects.maxvit.configs import backbones
from official.vision.configs import common
from official.vision.configs import decoders
from official.vision.configs import maskrcnn


Parser = maskrcnn.Parser
Anchor = maskrcnn.Anchor
Losses = maskrcnn.Losses
ROISampler = maskrcnn.ROISampler
DetectionHead = maskrcnn.DetectionHead
DataConfig = maskrcnn.DataConfig
MaskRCNN = maskrcnn.MaskRCNN
MaskRCNNTask = maskrcnn.MaskRCNNTask


COCO_INPUT_PATH_BASE = (
    '/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco'
)


@exp_factory.register_config_factory('rcnn_maxvit_coco')
def rcnn_maxvit_coco() -> cfg.ExperimentConfig:
  """COCO object detection with MaxViT and Cascade R-CNN."""
  steps_per_epoch = 1848  # based on 463 steps @ bs=256
  train_batch_size = 256
  coco_val_samples = 5000
  eval_batch_size = 64

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              anchor=Anchor(num_scales=3, anchor_size=3.0),
              backbone=backbones.Backbone(
                  type='maxvit',
                  maxvit=backbones.MaxViT(model_name='maxvit-base')
              ),
              decoder=decoders.Decoder(type='fpn', fpn=decoders.FPN()),
              num_classes=91,
              input_size=[640, 640, 3],
              include_mask=True,
              roi_sampler=ROISampler(
                  cascade_iou_thresholds=[0.7], foreground_iou_threshold=0.6),
              detection_head=DetectionHead(
                  cascade_class_ensemble=True, class_agnostic_bbox_pred=True),
              norm_activation=common.NormActivation(
                  use_sync_bn=True,
                  activation='relu',
                  norm_epsilon=0.001,
                  norm_momentum=0.99),
              min_level=3,
              max_level=7,
          ),
          losses=Losses(l2_weight_decay=0.0),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.5)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=True)),
      trainer=cfg.TrainerConfig(
          train_steps=90000,
          validation_steps=coco_val_samples // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          checkpoint_interval=steps_per_epoch * 4,
          optimizer_config=optimization_config.OptimizationConfig({
              'ema': {
                  'average_decay': 0.9998,
                  'trainable_weights_only': False,
              },
              'optimizer': {
                  'type': 'adamw',
                  'adamw': {
                      'weight_decay_rate': 0.0001,
                      'beta_1': 0.9,
                      'beta_2': 0.999,
                      'include_in_weight_decay': r'.*(kernel|weight):0$',
                  },
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      'decay_steps': 90000,
                      'initial_learning_rate': 0.0001,
                      'alpha': 0.03,
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 6000,
                      'warmup_learning_rate': 0.,
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config