fffner_prediction.py 14.6 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""FFFNER prediction task."""
import collections
import dataclasses

from absl import logging
import numpy as np
import tensorflow as tf

from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.tasks import utils
from official.projects.fffner import fffner_classifier

METRIC_TYPES = frozenset(
    ['accuracy', 'matthews_corrcoef', 'pearson_spearman_corr'])


@dataclasses.dataclass
class FFFNerModelConfig(base_config.Config):
  """A classifier/regressor configuration."""
  num_classes_is_entity: int = 0
  num_classes_entity_type: int = 0
  use_encoder_pooler: bool = True
  encoder: encoders.EncoderConfig = encoders.EncoderConfig()


@dataclasses.dataclass
class FFFNerPredictionConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can
  # be specified.
  init_checkpoint: str = ''
  init_cls_pooler: bool = False
  hub_module_url: str = ''
  metric_type: str = 'accuracy'
  # Defines the concrete model config at instantiation time.
  model: FFFNerModelConfig = FFFNerModelConfig()
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


@task_factory.register_task_cls(FFFNerPredictionConfig)
class FFFNerTask(base_task.Task):
  """Task object for FFFNer."""

  def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
    super().__init__(params, logging_dir, name=name)
    if params.metric_type not in METRIC_TYPES:
      raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
    self.metric_type = params.metric_type
    self.label_field_is_entity = 'is_entity_label'
    self.label_field_entity_type = 'entity_type_label'

  def build_model(self):
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
    else:
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
    if self.task_config.model.encoder.type == 'xlnet':
      assert False, 'Not supported yet'
    else:
      return fffner_classifier.FFFNerClassifier(
          # encoder_network.inputs
          network=encoder_network,
          num_classes_is_entity=self.task_config.model.num_classes_is_entity,
          num_classes_entity_type=self.task_config.model
          .num_classes_entity_type,
          initializer=tf.keras.initializers.TruncatedNormal(
              stddev=encoder_cfg.initializer_range),
          use_encoder_pooler=self.task_config.model.use_encoder_pooler)

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    label_ids_is_entity = labels[self.label_field_is_entity]
    label_ids_entity_type = labels[self.label_field_entity_type]
    loss_is_entity = tf.keras.losses.sparse_categorical_crossentropy(
        label_ids_is_entity,
        tf.cast(model_outputs[0], tf.float32),
        from_logits=True)
    loss_entity_type = tf.keras.losses.sparse_categorical_crossentropy(
        label_ids_entity_type,
        tf.cast(model_outputs[1], tf.float32),
        from_logits=True)
    loss = loss_is_entity + loss_entity_type

    if aux_losses:
      loss += tf.add_n(aux_losses)
    return tf_utils.safe_mean(loss)

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':

      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids,
            is_entity_token_pos=tf.zeros((1, 1), dtype=tf.int32),
            entity_type_token_pos=tf.ones((1, 1), dtype=tf.int32))

        x[self.label_field_is_entity] = tf.zeros((1, 1), dtype=tf.int32)
        x[self.label_field_entity_type] = tf.zeros((1, 1), dtype=tf.int32)
        return x

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return data_loader_factory.get_data_loader(params).load(input_context)

  def build_metrics(self, training=None):
    del training
    metrics = [
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='cls_accuracy_is_entity'),
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='cls_accuracy_entity_type'),
    ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    for metric in metrics:
      if metric.name == 'cls_accuracy_is_entity':
        metric.update_state(labels[self.label_field_is_entity],
                            model_outputs[0])
      if metric.name == 'cls_accuracy_entity_type':
        metric.update_state(labels[self.label_field_entity_type],
                            model_outputs[1])

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    compiled_metrics.update_state(labels[self.label_field_is_entity],
                                  model_outputs[0])
    compiled_metrics.update_state(labels[self.label_field_entity_type],
                                  model_outputs[1])

  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    features, labels = inputs, inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    if model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics or []})
      logs.update({m.name: m.result() for m in model.metrics})
    logs.update({
        'sentence_prediction_is_entity': outputs[0],
        'sentence_prediction_entity_type': outputs[1],
        'labels_is_entity': labels[self.label_field_is_entity],
        'labels_entity_type': labels[self.label_field_entity_type],
        'id': labels['example_id'],
        'sentence_id': labels['sentence_id'],
        'span_start': labels['span_start'],
        'span_end': labels['span_end']
    })
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      state = {
          'sentence_prediction_is_entity': [],
          'sentence_prediction_entity_type': [],
          'labels_is_entity': [],
          'labels_entity_type': [],
          'ids': [],
          'sentence_id': [],
          'span_start': [],
          'span_end': []
      }
    state['sentence_prediction_is_entity'].append(
        np.concatenate(
            [v.numpy() for v in step_outputs['sentence_prediction_is_entity']],
            axis=0))
    state['sentence_prediction_entity_type'].append(
        np.concatenate([
            v.numpy() for v in step_outputs['sentence_prediction_entity_type']
        ],
                       axis=0))
    state['labels_is_entity'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels_is_entity']],
                       axis=0))
    state['labels_entity_type'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels_entity_type']],
                       axis=0))
    state['ids'].append(
        np.concatenate([v.numpy() for v in step_outputs['id']], axis=0))
    state['sentence_id'].append(
        np.concatenate([v.numpy() for v in step_outputs['sentence_id']],
                       axis=0))
    state['span_start'].append(
        np.concatenate([v.numpy() for v in step_outputs['span_start']], axis=0))
    state['span_end'].append(
        np.concatenate([v.numpy() for v in step_outputs['span_end']], axis=0))
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    sentence_prediction_is_entity = np.concatenate(
        aggregated_logs['sentence_prediction_is_entity'], axis=0)
    sentence_prediction_is_entity = np.reshape(
        sentence_prediction_is_entity,
        (-1, self.task_config.model.num_classes_is_entity))
    sentence_prediction_entity_type = np.concatenate(
        aggregated_logs['sentence_prediction_entity_type'], axis=0)
    sentence_prediction_entity_type = np.reshape(
        sentence_prediction_entity_type,
        (-1, self.task_config.model.num_classes_entity_type))
    labels_is_entity = np.concatenate(
        aggregated_logs['labels_is_entity'], axis=0)
    labels_is_entity = np.reshape(labels_is_entity, -1)
    labels_entity_type = np.concatenate(
        aggregated_logs['labels_entity_type'], axis=0)
    labels_entity_type = np.reshape(labels_entity_type, -1)

    ids = np.concatenate(aggregated_logs['ids'], axis=0)
    ids = np.reshape(ids, -1)
    sentence_id = np.concatenate(aggregated_logs['sentence_id'], axis=0)
    sentence_id = np.reshape(sentence_id, -1)
    span_start = np.concatenate(aggregated_logs['span_start'], axis=0)
    span_start = np.reshape(span_start, -1)
    span_end = np.concatenate(aggregated_logs['span_end'], axis=0)
    span_end = np.reshape(span_end, -1)

    def resolve(length, spans, prediction_confidence):
      used = [False] * length
      spans = sorted(
          spans,
          key=lambda x: prediction_confidence[(x[0], x[1])],
          reverse=True)
      real_spans = []
      for span_start, span_end, ent_type in spans:
        fill = False
        for s in range(span_start, span_end + 1):
          if used[s]:
            fill = True
            break
        if not fill:
          real_spans.append((span_start, span_end, ent_type))
          for s in range(span_start, span_end + 1):
            used[s] = True
      return real_spans

    def get_p_r_f(truth, pred):
      n_pred = len(pred)
      n_truth = len(truth)
      n_correct = len(set(pred) & set(truth))
      precision = 1. * n_correct / n_pred if n_pred != 0 else 0.0
      recall = 1. * n_correct / n_truth if n_truth != 0 else 0.0
      f1 = 2 * precision * recall / (
          precision + recall) if precision + recall != 0.0 else 0.0
      return {
          'n_pred': n_pred,
          'n_truth': n_truth,
          'n_correct': n_correct,
          'precision': precision,
          'recall': recall,
          'f1': f1,
      }

    def softmax(x):
      x = np.array(x)
      e_x = np.exp(x - np.max(x))
      return e_x / e_x.sum(axis=0)

    per_sid_results = collections.defaultdict(list)
    for _, sent_id, sp_start, sp_end, is_entity_label, is_entity_logit, entity_type_label, entity_type_logit in zip(
        ids, sentence_id, span_start, span_end, labels_is_entity,
        sentence_prediction_is_entity, labels_entity_type,
        sentence_prediction_entity_type):
      if sent_id > 0:
        per_sid_results[sent_id].append(
            (sp_start, sp_end, is_entity_label, is_entity_logit,
             entity_type_label, entity_type_logit))
    ground_truth = []
    prediction_is_entity = []
    prediction_entity_type = []
    for key in sorted(list(per_sid_results.keys())):
      results = per_sid_results[key]
      gt_entities = []
      predictied_entities = []
      prediction_confidence = {}
      prediction_confidence_type = {}
      length = 0
      for span_start, span_end, ground_truth_span, prediction_span, ground_truth_type, prediction_type in results:
        if ground_truth_span == 1:
          gt_entities.append((span_start, span_end, ground_truth_type))
        if prediction_span[1] > prediction_span[0]:
          predictied_entities.append(
              (span_start, span_end, np.argmax(prediction_type).item()))
        prediction_confidence[(span_start,
                               span_end)] = max(softmax(prediction_span))
        prediction_confidence_type[(span_start,
                                    span_end)] = max(softmax(prediction_type))
        length = max(length, span_end)
      length += 1
      ground_truth.extend([(key, *x) for x in gt_entities])
      prediction_is_entity.extend([(key, *x) for x in predictied_entities])
      resolved_predicted = resolve(length, predictied_entities,
                                   prediction_confidence)
      prediction_entity_type.extend([(key, *x) for x in resolved_predicted])

    raw = get_p_r_f(ground_truth, prediction_is_entity)
    resolved = get_p_r_f(ground_truth, prediction_entity_type)
    return {
        'raw_f1': raw['f1'],
        'raw_precision': raw['precision'],
        'raw_recall': raw['recall'],
        'resolved_f1': resolved['f1'],
        'resolved_precision': resolved['precision'],
        'resolved_recall': resolved['recall'],
        'overall_f1': raw['f1'] + resolved['f1'],
    }

  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
    ckpt_dir_or_file = self.task_config.init_checkpoint
    logging.info('Trying to load pretrained checkpoint from %s',
                 ckpt_dir_or_file)
    if ckpt_dir_or_file and tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
      logging.info('No checkpoint file found from %s. Will not load.',
                   ckpt_dir_or_file)
      return

    pretrain2finetune_mapping = {
        'encoder': model.checkpoint_items['encoder'],
    }
    if self.task_config.init_cls_pooler:
      # This option is valid when use_encoder_pooler is false.
      pretrain2finetune_mapping[
          'next_sentence.pooler_dense'] = model.checkpoint_items[
              'sentence_prediction.pooler_dense']
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
    status = ckpt.read(ckpt_dir_or_file)
    status.expect_partial().assert_existing_objects_matched()
    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)