optimization.py 5.66 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Customized optimizer to match paper results."""

import dataclasses
import tensorflow as tf
from official.modeling import optimization
from official.nlp import optimization as nlp_optimization


@dataclasses.dataclass
class DETRAdamWConfig(optimization.AdamWeightDecayConfig):
  pass


@dataclasses.dataclass
class OptimizerConfig(optimization.OptimizerConfig):
  detr_adamw: DETRAdamWConfig = DETRAdamWConfig()


@dataclasses.dataclass
class OptimizationConfig(optimization.OptimizationConfig):
  """Configuration for optimizer and learning rate schedule.

  Attributes:
    optimizer: optimizer oneof config.
    ema: optional exponential moving average optimizer config, if specified, ema
      optimizer will be used.
    learning_rate: learning rate oneof config.
    warmup: warmup oneof config.
  """
  optimizer: OptimizerConfig = OptimizerConfig()


# TODO(frederickliu): figure out how to make this configuable.
# TODO(frederickliu): Study if this is needed.
class _DETRAdamW(nlp_optimization.AdamWeightDecay):
  """Custom AdamW to support different lr scaling for backbone.

  The code is copied from AdamWeightDecay and Adam with learning scaling.
  """

  def _resource_apply_dense(self, grad, var, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
    apply_state = kwargs['apply_state']
    if 'detr' not in var.name:
      lr_t *= 0.1
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
      var_device, var_dtype = var.device, var.dtype.base_dtype
      coefficients = ((apply_state or {}).get((var_device, var_dtype))
                      or self._fallback_apply_state(var_device, var_dtype))

      m = self.get_slot(var, 'm')
      v = self.get_slot(var, 'v')
      lr = coefficients[
          'lr_t'] * 0.1 if 'detr' not in var.name else coefficients['lr_t']

      if not self.amsgrad:
        return tf.raw_ops.ResourceApplyAdam(
            var=var.handle,
            m=m.handle,
            v=v.handle,
            beta1_power=coefficients['beta_1_power'],
            beta2_power=coefficients['beta_2_power'],
            lr=lr,
            beta1=coefficients['beta_1_t'],
            beta2=coefficients['beta_2_t'],
            epsilon=coefficients['epsilon'],
            grad=grad,
            use_locking=self._use_locking)
      else:
        vhat = self.get_slot(var, 'vhat')
        return tf.raw_ops.ResourceApplyAdamWithAmsgrad(
            var=var.handle,
            m=m.handle,
            v=v.handle,
            vhat=vhat.handle,
            beta1_power=coefficients['beta_1_power'],
            beta2_power=coefficients['beta_2_power'],
            lr=lr,
            beta1=coefficients['beta_1_t'],
            beta2=coefficients['beta_2_t'],
            epsilon=coefficients['epsilon'],
            grad=grad,
            use_locking=self._use_locking)

  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
    apply_state = kwargs['apply_state']
    if 'detr' not in var.name:
      lr_t *= 0.1
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
      var_device, var_dtype = var.device, var.dtype.base_dtype
      coefficients = ((apply_state or {}).get((var_device, var_dtype))
                      or self._fallback_apply_state(var_device, var_dtype))

      # m_t = beta1 * m + (1 - beta1) * g_t
      m = self.get_slot(var, 'm')
      m_scaled_g_values = grad * coefficients['one_minus_beta_1_t']
      m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
                                use_locking=self._use_locking)
      with tf.control_dependencies([m_t]):
        m_t = self._resource_scatter_add(m, indices, m_scaled_g_values)

      # v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
      v = self.get_slot(var, 'v')
      v_scaled_g_values = (grad * grad) * coefficients['one_minus_beta_2_t']
      v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
                                use_locking=self._use_locking)
      with tf.control_dependencies([v_t]):
        v_t = self._resource_scatter_add(v, indices, v_scaled_g_values)
      lr = coefficients[
          'lr_t'] * 0.1 if 'detr' not in var.name else coefficients['lr_t']
      if not self.amsgrad:
        v_sqrt = tf.sqrt(v_t)
        var_update = tf.compat.v1.assign_sub(
            var, lr * m_t / (v_sqrt + coefficients['epsilon']),
            use_locking=self._use_locking)
        return tf.group(*[var_update, m_t, v_t])
      else:
        v_hat = self.get_slot(var, 'vhat')
        v_hat_t = tf.maximum(v_hat, v_t)
        with tf.control_dependencies([v_hat_t]):
          v_hat_t = tf.compat.v1.assign(
              v_hat, v_hat_t, use_locking=self._use_locking)
        v_hat_sqrt = tf.sqrt(v_hat_t)
        var_update = tf.compat.v1.assign_sub(
            var,
            lr* m_t / (v_hat_sqrt + coefficients['epsilon']),
            use_locking=self._use_locking)
        return tf.group(*[var_update, m_t, v_t, v_hat_t])

optimization.register_optimizer_cls('detr_adamw', _DETRAdamW)