detr.py 11.8 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implements End-to-End Object Detection with Transformers.

Model paper: https://arxiv.org/abs/2005.12872
This module does not support Keras de/serialization. Please use
tf.train.Checkpoint for object based saving and loading and tf.saved_model.save
for graph serializaiton.
"""
import math
from typing import Any, List

import tensorflow as tf

from official.modeling import tf_utils
from official.projects.detr.modeling import transformer
from official.vision.ops import box_ops


def position_embedding_sine(attention_mask,
                            num_pos_features=256,
                            temperature=10000.,
                            normalize=True,
                            scale=2 * math.pi):
  """Sine-based positional embeddings for 2D images.

  Args:
    attention_mask: a `bool` Tensor specifying the size of the input image to
      the Transformer and which elements are padded, of size [batch_size,
      height, width]
    num_pos_features: a `int` specifying the number of positional features,
      should be equal to the hidden size of the Transformer network
    temperature: a `float` specifying the temperature of the positional
      embedding. Any type that is converted to a `float` can also be accepted.
    normalize: a `bool` determining whether the positional embeddings should be
      normalized between [0, scale] before application of the sine and cos
      functions.
    scale: a `float` if normalize is True specifying the scale embeddings before
      application of the embedding function.

  Returns:
    embeddings: a `float` tensor of the same shape as input_tensor specifying
      the positional embeddings based on sine features.
  """
  if num_pos_features % 2 != 0:
    raise ValueError(
        "Number of embedding features (num_pos_features) must be even when "
        "column and row embeddings are concatenated.")
  num_pos_features = num_pos_features // 2

  # Produce row and column embeddings based on total size of the image
  # <tf.float>[batch_size, height, width]
  attention_mask = tf.cast(attention_mask, tf.float32)
  row_embedding = tf.cumsum(attention_mask, 1)
  col_embedding = tf.cumsum(attention_mask, 2)

  if normalize:
    eps = 1e-6
    row_embedding = row_embedding / (row_embedding[:, -1:, :] + eps) * scale
    col_embedding = col_embedding / (col_embedding[:, :, -1:] + eps) * scale

  dim_t = tf.range(num_pos_features, dtype=row_embedding.dtype)
  dim_t = tf.pow(temperature, 2 * (dim_t // 2) / num_pos_features)

  # Creates positional embeddings for each row and column position
  # <tf.float>[batch_size, height, width, num_pos_features]
  pos_row = tf.expand_dims(row_embedding, -1) / dim_t
  pos_col = tf.expand_dims(col_embedding, -1) / dim_t
  pos_row = tf.stack(
      [tf.sin(pos_row[:, :, :, 0::2]),
       tf.cos(pos_row[:, :, :, 1::2])], axis=4)
  pos_col = tf.stack(
      [tf.sin(pos_col[:, :, :, 0::2]),
       tf.cos(pos_col[:, :, :, 1::2])], axis=4)

  # final_shape = pos_row.shape.as_list()[:3] + [-1]
  final_shape = tf_utils.get_shape_list(pos_row)[:3] + [-1]
  pos_row = tf.reshape(pos_row, final_shape)
  pos_col = tf.reshape(pos_col, final_shape)
  output = tf.concat([pos_row, pos_col], -1)

  embeddings = tf.cast(output, tf.float32)
  return embeddings


def postprocess(outputs: dict[str, tf.Tensor]) -> dict[str, tf.Tensor]:
  """Performs post-processing on model output.

  Args:
    outputs: The raw model output.

  Returns:
    Postprocessed model output.
  """
  predictions = {
      "detection_boxes":  # Box coordinates are relative values here.
          box_ops.cycxhw_to_yxyx(outputs["box_outputs"]),
      "detection_scores":
          tf.math.reduce_max(
              tf.nn.softmax(outputs["cls_outputs"])[:, :, 1:], axis=-1),
      "detection_classes":
          tf.math.argmax(outputs["cls_outputs"][:, :, 1:], axis=-1) + 1,
      # Fix this. It's not being used at the moment.
      "num_detections":
          tf.reduce_sum(
              tf.cast(
                  tf.math.greater(
                      tf.math.reduce_max(outputs["cls_outputs"], axis=-1), 0),
                  tf.int32),
              axis=-1)
  }
  return predictions


class DETR(tf.keras.Model):
  """DETR model with Keras.

  DETR consists of backbone, query embedding, DETRTransformer,
  class and box heads.
  """

  def __init__(self,
               backbone,
               backbone_endpoint_name,
               num_queries,
               hidden_size,
               num_classes,
               num_encoder_layers=6,
               num_decoder_layers=6,
               dropout_rate=0.1,
               **kwargs):
    super().__init__(**kwargs)
    self._num_queries = num_queries
    self._hidden_size = hidden_size
    self._num_classes = num_classes
    self._num_encoder_layers = num_encoder_layers
    self._num_decoder_layers = num_decoder_layers
    self._dropout_rate = dropout_rate
    if hidden_size % 2 != 0:
      raise ValueError("hidden_size must be a multiple of 2.")
    self._backbone = backbone
    self._backbone_endpoint_name = backbone_endpoint_name

  def build(self, input_shape=None):
    self._input_proj = tf.keras.layers.Conv2D(
        self._hidden_size, 1, name="detr/conv2d")
    self._build_detection_decoder()
    super().build(input_shape)

  def _build_detection_decoder(self):
    """Builds detection decoder."""
    self._transformer = DETRTransformer(
        num_encoder_layers=self._num_encoder_layers,
        num_decoder_layers=self._num_decoder_layers,
        dropout_rate=self._dropout_rate)
    self._query_embeddings = self.add_weight(
        "detr/query_embeddings",
        shape=[self._num_queries, self._hidden_size],
        initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1.),
        dtype=tf.float32)
    sqrt_k = math.sqrt(1.0 / self._hidden_size)
    self._class_embed = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomUniform(-sqrt_k, sqrt_k),
        name="detr/cls_dense")
    self._bbox_embed = [
        tf.keras.layers.Dense(
            self._hidden_size, activation="relu",
            kernel_initializer=tf.keras.initializers.RandomUniform(
                -sqrt_k, sqrt_k),
            name="detr/box_dense_0"),
        tf.keras.layers.Dense(
            self._hidden_size, activation="relu",
            kernel_initializer=tf.keras.initializers.RandomUniform(
                -sqrt_k, sqrt_k),
            name="detr/box_dense_1"),
        tf.keras.layers.Dense(
            4, kernel_initializer=tf.keras.initializers.RandomUniform(
                -sqrt_k, sqrt_k),
            name="detr/box_dense_2")]
    self._sigmoid = tf.keras.layers.Activation("sigmoid")

  @property
  def backbone(self) -> tf.keras.Model:
    return self._backbone

  def get_config(self):
    return {
        "backbone": self._backbone,
        "backbone_endpoint_name": self._backbone_endpoint_name,
        "num_queries": self._num_queries,
        "hidden_size": self._hidden_size,
        "num_classes": self._num_classes,
        "num_encoder_layers": self._num_encoder_layers,
        "num_decoder_layers": self._num_decoder_layers,
        "dropout_rate": self._dropout_rate,
    }

  @classmethod
  def from_config(cls, config):
    return cls(**config)

  def _generate_image_mask(self, inputs: tf.Tensor,
                           target_shape: tf.Tensor) -> tf.Tensor:
    """Generates image mask from input image."""
    mask = tf.expand_dims(
        tf.cast(tf.not_equal(tf.reduce_sum(inputs, axis=-1), 0), inputs.dtype),
        axis=-1)
    mask = tf.image.resize(
        mask, target_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    return mask

  def call(self, inputs: tf.Tensor, training: bool = None) -> List[Any]:  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    batch_size = tf.shape(inputs)[0]
    features = self._backbone(inputs)[self._backbone_endpoint_name]
    shape = tf.shape(features)
    mask = self._generate_image_mask(inputs, shape[1: 3])

    pos_embed = position_embedding_sine(
        mask[:, :, :, 0], num_pos_features=self._hidden_size)
    pos_embed = tf.reshape(pos_embed, [batch_size, -1, self._hidden_size])

    features = tf.reshape(
        self._input_proj(features), [batch_size, -1, self._hidden_size])
    mask = tf.reshape(mask, [batch_size, -1])

    decoded_list = self._transformer({
        "inputs":
            features,
        "targets":
            tf.tile(
                tf.expand_dims(self._query_embeddings, axis=0),
                (batch_size, 1, 1)),
        "pos_embed": pos_embed,
        "mask": mask,
    })
    out_list = []
    for decoded in decoded_list:
      decoded = tf.stack(decoded)
      output_class = self._class_embed(decoded)
      box_out = decoded
      for layer in self._bbox_embed:
        box_out = layer(box_out)
      output_coord = self._sigmoid(box_out)
      out = {"cls_outputs": output_class, "box_outputs": output_coord}
      if not training:
        out.update(postprocess(out))
      out_list.append(out)

    return out_list


class DETRTransformer(tf.keras.layers.Layer):
  """Encoder and Decoder of DETR."""

  def __init__(self, num_encoder_layers=6, num_decoder_layers=6,
               dropout_rate=0.1, **kwargs):
    super().__init__(**kwargs)
    self._dropout_rate = dropout_rate
    self._num_encoder_layers = num_encoder_layers
    self._num_decoder_layers = num_decoder_layers

  def build(self, input_shape=None):
    if self._num_encoder_layers > 0:
      self._encoder = transformer.TransformerEncoder(
          attention_dropout_rate=self._dropout_rate,
          dropout_rate=self._dropout_rate,
          intermediate_dropout=self._dropout_rate,
          norm_first=False,
          num_layers=self._num_encoder_layers)
    else:
      self._encoder = None

    self._decoder = transformer.TransformerDecoder(
        attention_dropout_rate=self._dropout_rate,
        dropout_rate=self._dropout_rate,
        intermediate_dropout=self._dropout_rate,
        norm_first=False,
        num_layers=self._num_decoder_layers)
    super().build(input_shape)

  def get_config(self):
    return {
        "num_encoder_layers": self._num_encoder_layers,
        "num_decoder_layers": self._num_decoder_layers,
        "dropout_rate": self._dropout_rate,
    }

  def call(self, inputs):
    sources = inputs["inputs"]
    targets = inputs["targets"]
    pos_embed = inputs["pos_embed"]
    mask = inputs["mask"]
    input_shape = tf_utils.get_shape_list(sources)
    source_attention_mask = tf.tile(
        tf.expand_dims(mask, axis=1), [1, input_shape[1], 1])
    if self._encoder is not None:
      memory = self._encoder(
          sources, attention_mask=source_attention_mask, pos_embed=pos_embed)
    else:
      memory = sources

    target_shape = tf_utils.get_shape_list(targets)
    cross_attention_mask = tf.tile(
        tf.expand_dims(mask, axis=1), [1, target_shape[1], 1])
    target_shape = tf.shape(targets)
    decoded = self._decoder(
        tf.zeros_like(targets),
        memory,
        # TODO(b/199545430): self_attention_mask could be set to None when this
        # bug is resolved. Passing ones for now.
        self_attention_mask=tf.ones(
            (target_shape[0], target_shape[1], target_shape[1])),
        cross_attention_mask=cross_attention_mask,
        return_all_decoder_outputs=True,
        input_pos_embed=targets,
        memory_pos_embed=pos_embed)
    return decoded