detr.py 9.58 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR configurations."""

import dataclasses
import os
from typing import List, Optional, Union

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.projects.detr import optimization
from official.projects.detr.dataloaders import coco
from official.vision.configs import backbones
from official.vision.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  tfds_name: str = ''
  tfds_split: str = 'train'
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: common.DataDecoder = common.DataDecoder()
  shuffle_buffer_size: int = 10000
  file_type: str = 'tfrecord'
  drop_remainder: bool = True


@dataclasses.dataclass
class Losses(hyperparams.Config):
  class_offset: int = 0
  lambda_cls: float = 1.0
  lambda_box: float = 5.0
  lambda_giou: float = 2.0
  background_cls_weight: float = 0.1
  l2_weight_decay: float = 1e-4


@dataclasses.dataclass
class Detr(hyperparams.Config):
  """Detr model definations."""
  num_queries: int = 100
  hidden_size: int = 256
  num_classes: int = 91  # 0: background
  num_encoder_layers: int = 6
  num_decoder_layers: int = 6
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet(model_id=50, bn_trainable=False))
  norm_activation: common.NormActivation = common.NormActivation()
  backbone_endpoint_name: str = '5'


@dataclasses.dataclass
class DetrTask(cfg.TaskConfig):
  model: Detr = Detr()
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[str, List[str]] = 'all'  # all, backbone
  annotation_file: Optional[str] = None
  per_category_metrics: bool = False


COCO_INPUT_PATH_BASE = 'coco'
COCO_TRAIN_EXAMPLES = 118287
COCO_VAL_EXAMPLES = 5000


@exp_factory.register_config_factory('detr_coco')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  num_train_data = COCO_TRAIN_EXAMPLES
  num_steps_per_epoch = num_train_data // train_batch_size
  train_steps = 500 * num_steps_per_epoch  # 500 epochs
  decay_at = train_steps - 100 * num_steps_per_epoch  # 400 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
          init_checkpoint='',
          init_checkpoint_modules='backbone',
          model=Detr(
              num_classes=81,
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation()),
          losses=Losses(),
          train_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=-1,
          steps_per_loop=10000,
          summary_interval=10000,
          checkpoint_interval=10000,
          validation_interval=10000,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config


@exp_factory.register_config_factory('detr_coco_tfrecord')
def detr_coco_tfrecord() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
          init_checkpoint='',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=Detr(
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation()),
          losses=Losses(),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False,
          )),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5 * steps_per_epoch,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config


@exp_factory.register_config_factory('detr_coco_tfds')
def detr_coco_tfds() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
          init_checkpoint='',
          init_checkpoint_modules='backbone',
          model=Detr(
              num_classes=81,
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation()),
          losses=Losses(class_offset=1),
          train_data=DataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=DataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5 * steps_per_epoch,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config