encoder.py 9.13 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes

import tensorflow as tf

from official.modeling import activations
from official.modeling import tf_utils
from official.nlp import modeling
from official.nlp.modeling import layers
from official.projects.bigbird import recompute_grad
from official.projects.bigbird import recomputing_dropout


_MAX_SEQ_LEN = 4096


class RecomputeTransformerLayer(layers.TransformerScaffold):
  """Transformer layer that recomputes the forward pass during backpropagation."""

  def call(self, inputs, training=None):
    emb, mask = inputs
    def f(*args):
      # recompute_grad can only handle tensor inputs. so we enumerate the
      # nested input [emb, mask] as follows:
      # args[0]: emb
      # args[1]: mask[0] = band_mask
      # args[2]: mask[1] = encoder_from_mask
      # args[3]: mask[2] = encoder_to_mask
      # args[4]: mask[3] = blocked_encoder_mask
      x = super(RecomputeTransformerLayer,
                self).call([args[0], [args[1], args[2], args[3], args[4]]],
                           training=training)
      return x

    f = recompute_grad.recompute_grad(f)

    return f(emb, *mask)


@tf.keras.utils.register_keras_serializable(package='Text')
class BigBirdEncoder(tf.keras.Model):
  """Transformer-based encoder network with BigBird attentions.

  *Note* that the network is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

  Args:
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
    max_position_embeddings: The maximum length of position embeddings that this
      encoder can consume. If None, max_position_embeddings uses the value from
      sequence length. This determines the variable shape for positional
      embeddings.
    type_vocab_size: The number of types that the 'type_ids' input can take.
    intermediate_size: The intermediate size for the transformer layers.
    block_size: int. A BigBird Attention parameter: size of block in from/to
      sequences.
    num_rand_blocks: int. A BigBird Attention parameter: number of random chunks
      per row.
    activation: The activation to use for the transformer layers.
    dropout_rate: The dropout rate to use for the transformer layers.
    attention_dropout_rate: The dropout rate to use for the attention layers
      within the transformer layers.
    initializer: The initialzer to use for all weights in this encoder.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
    use_gradient_checkpointing: Use gradient checkpointing to trade-off compute
      for memory.
  """

  def __init__(self,
               vocab_size,
               hidden_size=768,
               num_layers=12,
               num_attention_heads=12,
               max_position_embeddings=_MAX_SEQ_LEN,
               type_vocab_size=16,
               intermediate_size=3072,
               block_size=64,
               num_rand_blocks=3,
               activation=activations.gelu,
               dropout_rate=0.1,
               attention_dropout_rate=0.1,
               initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
               embedding_width=None,
               use_gradient_checkpointing=False,
               **kwargs):
    activation = tf.keras.activations.get(activation)
    initializer = tf.keras.initializers.get(initializer)

    if use_gradient_checkpointing:
      tf.keras.layers.Dropout = recomputing_dropout.RecomputingDropout
      layer_cls = RecomputeTransformerLayer
    else:
      layer_cls = layers.TransformerScaffold

    self._self_setattr_tracking = False
    self._config_dict = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'num_attention_heads': num_attention_heads,
        'max_position_embeddings': max_position_embeddings,
        'type_vocab_size': type_vocab_size,
        'intermediate_size': intermediate_size,
        'block_size': block_size,
        'num_rand_blocks': num_rand_blocks,
        'activation': tf_utils.serialize_activation(
            activation, use_legacy_format=True
        ),
        'dropout_rate': dropout_rate,
        'attention_dropout_rate': attention_dropout_rate,
        'initializer': tf_utils.serialize_initializer(
            initializer, use_legacy_format=True
        ),
        'embedding_width': embedding_width,
    }

    word_ids = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_word_ids')
    mask = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_mask')
    type_ids = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_type_ids')

    if embedding_width is None:
      embedding_width = hidden_size
    self._embedding_layer = modeling.layers.OnDeviceEmbedding(
        vocab_size=vocab_size,
        embedding_width=embedding_width,
        initializer=initializer,
        name='word_embeddings')
    word_embeddings = self._embedding_layer(word_ids)

    # Always uses dynamic slicing for simplicity.
    self._position_embedding_layer = modeling.layers.PositionEmbedding(
        initializer=initializer,
        max_length=max_position_embeddings,
        name='position_embedding')
    position_embeddings = self._position_embedding_layer(word_embeddings)
    self._type_embedding_layer = modeling.layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=initializer,
        use_one_hot=True,
        name='type_embeddings')
    type_embeddings = self._type_embedding_layer(type_ids)

    embeddings = tf.keras.layers.Add()(
        [word_embeddings, position_embeddings, type_embeddings])

    self._embedding_norm_layer = tf.keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    embeddings = self._embedding_norm_layer(embeddings)
    embeddings = tf.keras.layers.Dropout(rate=dropout_rate)(embeddings)

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    if embedding_width != hidden_size:
      self._embedding_projection = tf.keras.layers.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=initializer,
          name='embedding_projection')
      embeddings = self._embedding_projection(embeddings)

    self._transformer_layers = []
    data = embeddings
    masks = layers.BigBirdMasks(block_size=block_size)(
        data, mask)
    encoder_outputs = []
    attn_head_dim = hidden_size // num_attention_heads
    for i in range(num_layers):
      layer = layer_cls(
          num_attention_heads,
          intermediate_size,
          activation,
          attention_cls=layers.BigBirdAttention,
          attention_cfg=dict(
              num_heads=num_attention_heads,
              key_dim=attn_head_dim,
              kernel_initializer=initializer,
              from_block_size=block_size,
              to_block_size=block_size,
              num_rand_blocks=num_rand_blocks,
              max_rand_mask_length=max_position_embeddings,
              seed=i),
          dropout_rate=dropout_rate,
          attention_dropout_rate=dropout_rate,
          kernel_initializer=initializer)
      self._transformer_layers.append(layer)
      data = layer([data, masks])
      encoder_outputs.append(data)

    outputs = dict(
        sequence_output=encoder_outputs[-1], encoder_outputs=encoder_outputs)
    super().__init__(
        inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return self._config_dict

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)