basnet.py 5.32 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BASNet configuration definition."""
import dataclasses
import os
from typing import List, Optional, Union
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  output_size: List[int] = dataclasses.field(default_factory=list)
  # If crop_size is specified, image will be resized first to
  # output_size, then crop of size crop_size will be cropped.
  crop_size: List[int] = dataclasses.field(default_factory=list)
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 1000
  cycle_length: int = 10
  resize_eval_groundtruth: bool = True
  groundtruth_padded_size: List[int] = dataclasses.field(default_factory=list)
  aug_rand_hflip: bool = True
  file_type: str = 'tfrecord'


@dataclasses.dataclass
class BASNetModel(hyperparams.Config):
  """BASNet model config."""
  input_size: List[int] = dataclasses.field(default_factory=list)
  use_bias: bool = False
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class Losses(hyperparams.Config):
  label_smoothing: float = 0.1
  ignore_label: int = 0  # will be treated as background
  l2_weight_decay: float = 0.0
  use_groundtruth_dimension: bool = True


@dataclasses.dataclass
class BASNetTask(cfg.TaskConfig):
  """The model config."""
  model: BASNetModel = BASNetModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  gradient_clip_norm: float = 0.0
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'backbone'  # all, backbone, and/or decoder


@exp_factory.register_config_factory('basnet')
def basnet() -> cfg.ExperimentConfig:
  """BASNet general."""
  return cfg.ExperimentConfig(
      task=BASNetModel(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


# DUTS Dataset
DUTS_TRAIN_EXAMPLES = 10553
DUTS_VAL_EXAMPLES = 5019
DUTS_INPUT_PATH_BASE_TR = 'DUTS_DATASET'
DUTS_INPUT_PATH_BASE_VAL = 'DUTS_DATASET'


@exp_factory.register_config_factory('basnet_duts')
def basnet_duts() -> cfg.ExperimentConfig:
  """Image segmentation on duts with basnet."""
  train_batch_size = 64
  eval_batch_size = 16
  steps_per_epoch = DUTS_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=BASNetTask(
          model=BASNetModel(
              input_size=[None, None, 3],
              use_bias=True,
              norm_activation=common.NormActivation(
                  activation='relu',
                  norm_momentum=0.99,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=0),
          train_data=DataConfig(
              input_path=os.path.join(DUTS_INPUT_PATH_BASE_TR,
                                      'tf_record_train'),
              file_type='tfrecord',
              crop_size=[224, 224],
              output_size=[256, 256],
              is_training=True,
              global_batch_size=train_batch_size,
          ),
          validation_data=DataConfig(
              input_path=os.path.join(DUTS_INPUT_PATH_BASE_VAL,
                                      'tf_record_test'),
              file_type='tfrecord',
              output_size=[256, 256],
              is_training=False,
              global_batch_size=eval_batch_size,
          ),
          init_checkpoint='gs://cloud-basnet-checkpoints/basnet_encoder_imagenet/ckpt-340306',
          init_checkpoint_modules='backbone'
      ),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=300 * steps_per_epoch,
          validation_steps=DUTS_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'adam',
                  'adam': {
                      'beta_1': 0.9,
                      'beta_2': 0.999,
                      'epsilon': 1e-8,
                  }
              },
              'learning_rate': {
                  'type': 'constant',
                  'constant': {'learning_rate': 0.001}
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config