assemblenet.py 13.5 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Definitions for AssembleNet/++ structures.

This structure is a `list` corresponding to a graph representation of the
network, where a node is a convolutional block and an edge specifies a
connection from one block to another.

Each node itself (in the structure list) is a list with the following format:
[block_level, [list_of_input_blocks], number_filter, temporal_dilation,
spatial_stride]. [list_of_input_blocks] should be the list of node indexes whose
values are less than the index of the node itself. The 'stems' of the network
directly taking raw inputs follow a different node format:
[stem_type, temporal_dilation]. The stem_type is -1 for RGB stem and is -2 for
optical flow stem. The stem_type -3 is reserved for the object segmentation
input.

In AssembleNet++lite, instead of passing a single `int` for number_filter, we
pass a list/tuple of three `int`s. They specify the number of channels to be
used for each layer in the inverted bottleneck modules.

The structure_weights specify the learned connection weights.
"""
import dataclasses
from typing import List, Optional, Tuple

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.vision.configs import backbones_3d
from official.vision.configs import common
from official.vision.configs import video_classification


@dataclasses.dataclass
class BlockSpec(hyperparams.Config):
  level: int = -1
  input_blocks: Tuple[int, ...] = tuple()
  num_filters: int = -1
  temporal_dilation: int = 1
  spatial_stride: int = 1
  input_block_weight: Tuple[float, ...] = tuple()


def flat_lists_to_blocks(model_structures, model_edge_weights):
  """Transforms the raw list structure configs to BlockSpec tuple."""
  blocks = []
  for node, edge_weights in zip(model_structures, model_edge_weights):
    if node[0] < 0:
      block = BlockSpec(level=node[0], temporal_dilation=node[1])
    else:
      block = BlockSpec(  # pytype: disable=wrong-arg-types
          level=node[0],
          input_blocks=node[1],
          num_filters=node[2],
          temporal_dilation=node[3],
          spatial_stride=node[4])
      if edge_weights:
        assert len(edge_weights[0]) == len(block.input_blocks), (
            f'{len(edge_weights[0])} != {len(block.input_blocks)} at block '
            f'{block} weight {edge_weights}')
        block.input_block_weight = tuple(edge_weights[0])
    blocks.append(block)
  return tuple(blocks)


def blocks_to_flat_lists(blocks: List[BlockSpec]):
  """Transforms BlockSpec tuple to the raw list structure configs."""
  # pylint: disable=g-complex-comprehension
  # pylint: disable=g-long-ternary
  model_structure = [[
      b.level,
      list(b.input_blocks), b.num_filters, b.temporal_dilation,
      b.spatial_stride, 0
  ] if b.level >= 0 else [b.level, b.temporal_dilation] for b in blocks]
  model_edge_weights = [
      [list(b.input_block_weight)] if b.input_block_weight else []
      for b in blocks
  ]
  return model_structure, model_edge_weights


# AssembleNet structure for 50/101 layer models, found using evolution with the
# Moments-in-Time dataset. This is the structure used for the experiments in the
# AssembleNet paper. The learned connectivity weights are also provided.
asn50_structure = [[-1, 4], [-1, 4], [-2, 1], [-2, 1], [0, [1], 32, 1, 1, 0],
                   [0, [0], 32, 4, 1, 0], [0, [0, 1, 2, 3], 32, 1, 1, 0],
                   [0, [2, 3], 32, 2, 1, 0], [1, [0, 4, 5, 6, 7], 64, 2, 2, 0],
                   [1, [0, 2, 4, 7], 64, 1, 2, 0], [1, [0, 5, 7], 64, 4, 2, 0],
                   [1, [0, 5], 64, 1, 2, 0], [2, [4, 8, 10, 11], 256, 1, 2, 0],
                   [2, [8, 9], 256, 4, 2, 0], [3, [12, 13], 512, 2, 2, 0]]
asn101_structure = [[-1, 4], [-1, 4], [-2, 1], [-2, 1], [0, [1], 32, 1, 1, 0],
                    [0, [0], 32, 4, 1, 0], [0, [0, 1, 2, 3], 32, 1, 1, 0],
                    [0, [2, 3], 32, 2, 1, 0], [1, [0, 4, 5, 6, 7], 64, 2, 2, 0],
                    [1, [0, 2, 4, 7], 64, 1, 2, 0], [1, [0, 5, 7], 64, 4, 2, 0],
                    [1, [0, 5], 64, 1, 2, 0], [2, [4, 8, 10, 11], 192, 1, 2, 0],
                    [2, [8, 9], 192, 4, 2, 0], [3, [12, 13], 256, 2, 2, 0]]
asn_structure_weights = [
    [], [], [], [], [], [],
    [[
        0.13810564577579498, 0.8465337157249451, 0.3072969317436218,
        0.2867436408996582
    ]], [[0.5846117734909058, 0.6066334843635559]],
    [[
        0.16382087767124176, 0.8852924704551697, 0.4039595425128937,
        0.6823437809944153, 0.5331538319587708
    ]],
    [[
        0.028569204732775688, 0.10333596915006638, 0.7517264485359192,
        0.9260114431381226
    ]], [[0.28832191228866577, 0.7627848982810974, 0.404977947473526]],
    [[0.23474831879138947, 0.7841425538063049]],
    [[
        0.27616503834724426, 0.9514784812927246, 0.6568767428398132,
        0.9547983407974243
    ]], [[0.5047007203102112, 0.8876819610595703]],
    [[0.9892204403877258, 0.8454614877700806]]
]


# AssembleNet++ structure for 50 layer models, found with the Charades dataset.
# This is the model used in the experiments in the AssembleNet++ paper.
# Note that, in order the build AssembleNet++ with this structure, you also need
# to feed 'object segmentation input' to the network indicated as [-3, 4]. It's
# the 5th block in the architecture.
# If you don't plan to use the object input but want to still benefit from
# peer-attention in AssembleNet++ (with RGB and OF), please use the above
# AssembleNet-50 model instead with assemblenet_plus.py code.
full_asnp50_structure = [[-1, 2], [-1, 4], [-2, 2], [-2, 1], [-3, 4],
                         [0, [0, 1, 2, 3, 4], 32, 1, 1, 0],
                         [0, [0, 1, 4], 32, 4, 1, 0],
                         [0, [2, 3, 4], 32, 8, 1, 0],
                         [0, [2, 3, 4], 32, 1, 1, 0],
                         [1, [0, 1, 2, 4, 5, 6, 7, 8], 64, 4, 2, 0],
                         [1, [2, 3, 4, 7, 8], 64, 1, 2, 0],
                         [1, [0, 4, 5, 6, 7], 128, 8, 2, 0],
                         [2, [4, 11], 256, 8, 2, 0],
                         [2, [2, 3, 4, 5, 6, 7, 8, 10, 11], 256, 4, 2, 0],
                         [3, [12, 13], 512, 2, 2, 0]]
full_asnp_structure_weights = [[], [], [], [], [], [[0.6143830418586731, 0.7111759185791016, 0.19351491332054138, 0.1701001077890396, 0.7178536653518677]], [[0.5755624771118164, 0.5644599795341492, 0.7128658294677734]], [[0.26563042402267456, 0.3033692538738251, 0.8244096636772156]], [[0.07013848423957825, 0.07905343919992447, 0.8767927885055542]], [[0.5008697509765625, 0.5020178556442261, 0.49819135665893555, 0.5015180706977844, 0.4987695813179016, 0.4990265369415283, 0.499239057302475, 0.4974501430988312]], [[0.47034338116645813, 0.4694305658340454, 0.767791748046875, 0.5539310574531555, 0.4520096182823181]], [[0.2769702076911926, 0.8116549253463745, 0.597356915473938, 0.6585626602172852, 0.5915306210517883]], [[0.501274824142456, 0.5016682147979736]], [[0.0866393893957138, 0.08469288796186447, 0.9739039540290833, 0.058271341025829315, 0.08397126197814941, 0.10285478830337524, 0.18506969511508942, 0.23874442279338837, 0.9188644886016846]], [[0.4174623489379883, 0.5844835638999939]]]  # pylint: disable=line-too-long


# AssembleNet++lite structure using inverted bottleneck blocks. By specifing
# the connection weights as [], the model could alos automatically learn the
# connection weights during its training.
asnp_lite_structure = [[-1, 1], [-2, 1],
                       [0, [0, 1], [27, 27, 12], 1, 2, 0],
                       [0, [0, 1], [27, 27, 12], 4, 2, 0],
                       [1, [0, 1, 2, 3], [54, 54, 24], 2, 2, 0],
                       [1, [0, 1, 2, 3], [54, 54, 24], 1, 2, 0],
                       [1, [0, 1, 2, 3], [54, 54, 24], 4, 2, 0],
                       [1, [0, 1, 2, 3], [54, 54, 24], 1, 2, 0],
                       [2, [0, 1, 2, 3, 4, 5, 6, 7], [152, 152, 68], 1, 2, 0],
                       [2, [0, 1, 2, 3, 4, 5, 6, 7], [152, 152, 68], 4, 2, 0],
                       [3, [2, 3, 4, 5, 6, 7, 8, 9], [432, 432, 192], 2, 2, 0]]
asnp_lite_structure_weights = [[], [], [[0.19914183020591736, 0.9278576374053955]], [[0.010816320776939392, 0.888792097568512]], [[0.9473835825920105, 0.6303419470787048, 0.1704932451248169, 0.05950307101011276]], [[0.9560931324958801, 0.7898273468017578, 0.36138781905174255, 0.07344610244035721]], [[0.9213919043540955, 0.13418640196323395, 0.8371981978416443, 0.07936054468154907]], [[0.9441559910774231, 0.9435100555419922, 0.7253988981246948, 0.13498817384243011]], [[0.9964852333068848, 0.8427878618240356, 0.8895476460456848, 0.11014710366725922, 0.6270533204078674, 0.44782018661499023, 0.61344975233078, 0.44898226857185364]], [[0.9970942735671997, 0.7105681896209717, 0.5078442096710205, 0.0951600968837738, 0.624282717704773, 0.8527252674102783, 0.8105692863464355, 0.7857823967933655]], [[0.6180334091186523, 0.11882413923740387, 0.06102970987558365, 0.04484326392412186, 0.05602221190929413, 0.052324872463941574, 0.9969874024391174, 0.9987731575965881]]]  # pylint: disable=line-too-long


@dataclasses.dataclass
class AssembleNet(hyperparams.Config):
  model_id: str = '50'
  num_frames: int = 0
  combine_method: str = 'sigmoid'
  blocks: Tuple[BlockSpec, ...] = tuple()


@dataclasses.dataclass
class AssembleNetPlus(hyperparams.Config):
  model_id: str = '50'
  num_frames: int = 0
  attention_mode: str = 'None'
  blocks: Tuple[BlockSpec, ...] = tuple()
  use_object_input: bool = False


@dataclasses.dataclass
class Backbone3D(backbones_3d.Backbone3D):
  """Configuration for backbones.

  Attributes:
    type: 'str', type of backbone be used, on the of fields below.
    assemblenet: AssembleNet backbone config.
    assemblenet_plus : AssembleNetPlus backbone config.
  """
  type: Optional[str] = None
  assemblenet: AssembleNet = AssembleNet()
  assemblenet_plus: AssembleNetPlus = AssembleNetPlus()


@dataclasses.dataclass
class AssembleNetModel(video_classification.VideoClassificationModel):
  """The AssembleNet model config."""
  model_type: str = 'assemblenet'
  backbone: Backbone3D = Backbone3D(type='assemblenet')
  norm_activation: common.NormActivation = common.NormActivation(
      norm_momentum=0.99, norm_epsilon=1e-5, use_sync_bn=True)
  max_pool_predictions: bool = False


@dataclasses.dataclass
class AssembleNetPlusModel(video_classification.VideoClassificationModel):
  """The AssembleNet model config."""
  model_type: str = 'assemblenet_plus'
  backbone: Backbone3D = Backbone3D(type='assemblenet_plus')
  norm_activation: common.NormActivation = common.NormActivation(
      norm_momentum=0.99, norm_epsilon=1e-5, use_sync_bn=True)
  max_pool_predictions: bool = False


@exp_factory.register_config_factory('assemblenet50_kinetics600')
def assemblenet_kinetics600() -> cfg.ExperimentConfig:
  """Video classification on Videonet with assemblenet."""
  exp = video_classification.video_classification_kinetics600()

  feature_shape = (32, 224, 224, 3)
  exp.task.train_data.global_batch_size = 1024
  exp.task.validation_data.global_batch_size = 32
  exp.task.train_data.feature_shape = feature_shape
  exp.task.validation_data.feature_shape = (120, 224, 224, 3)
  exp.task.train_data.dtype = 'bfloat16'
  exp.task.validation_data.dtype = 'bfloat16'

  model = AssembleNetModel()
  model.backbone.assemblenet.model_id = '50'
  model.backbone.assemblenet.blocks = flat_lists_to_blocks(
      asn50_structure, asn_structure_weights)
  model.backbone.assemblenet.num_frames = feature_shape[0]
  exp.task.model = model

  assert exp.task.model.backbone.assemblenet.num_frames > 0, (
      f'backbone num_frames '
      f'{exp.task.model.backbone.assemblenet}')

  return exp


@exp_factory.register_config_factory('assemblenet_ucf101')
def assemblenet_ucf101() -> cfg.ExperimentConfig:
  """Video classification on Videonet with assemblenet."""
  exp = video_classification.video_classification_ucf101()
  exp.task.train_data.dtype = 'bfloat16'
  exp.task.validation_data.dtype = 'bfloat16'
  feature_shape = (32, 224, 224, 3)
  model = AssembleNetModel()
  model.backbone.assemblenet.blocks = flat_lists_to_blocks(
      asn50_structure, asn_structure_weights)
  model.backbone.assemblenet.num_frames = feature_shape[0]
  exp.task.model = model

  assert exp.task.model.backbone.assemblenet.num_frames > 0, (
      f'backbone num_frames '
      f'{exp.task.model.backbone.assemblenet}')

  return exp


@exp_factory.register_config_factory('assemblenetplus_ucf101')
def assemblenetplus_ucf101() -> cfg.ExperimentConfig:
  """Video classification on Videonet with assemblenet."""
  exp = video_classification.video_classification_ucf101()
  exp.task.train_data.dtype = 'bfloat16'
  exp.task.validation_data.dtype = 'bfloat16'
  feature_shape = (32, 224, 224, 3)
  model = AssembleNetPlusModel()
  model.backbone.assemblenet_plus.blocks = flat_lists_to_blocks(
      asn50_structure, asn_structure_weights)
  model.backbone.assemblenet_plus.num_frames = feature_shape[0]
  exp.task.model = model

  assert exp.task.model.backbone.assemblenet_plus.num_frames > 0, (
      f'backbone num_frames '
      f'{exp.task.model.backbone.assemblenet_plus}')

  return exp