encoders_test.py 1.92 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for official.nlp.configs.encoders."""
import os

import tensorflow as tf

from official.modeling import hyperparams
from official.nlp.configs import encoders
from official.nlp.modeling import networks
from official.projects.teams import teams


class EncodersTest(tf.test.TestCase):

  def test_encoder_from_yaml(self):
    config = encoders.EncoderConfig(
        type="bert", bert=encoders.BertEncoderConfig(num_layers=1))
    encoder = encoders.build_encoder(config)
    ckpt = tf.train.Checkpoint(encoder=encoder)
    ckpt_path = ckpt.save(self.get_temp_dir() + "/ckpt")
    params_save_path = os.path.join(self.get_temp_dir(), "params.yaml")
    hyperparams.save_params_dict_to_yaml(config, params_save_path)

    retored_cfg = encoders.EncoderConfig.from_yaml(params_save_path)
    retored_encoder = encoders.build_encoder(retored_cfg)
    status = tf.train.Checkpoint(encoder=retored_encoder).restore(ckpt_path)
    status.assert_consumed()

  def test_build_teams(self):
    config = encoders.EncoderConfig(
        type="any", any=teams.TeamsEncoderConfig(num_layers=1))
    encoder = encoders.build_encoder(config)
    self.assertIsInstance(encoder, networks.EncoderScaffold)
    self.assertIsInstance(encoder.embedding_network,
                          networks.PackedSequenceEmbedding)


if __name__ == "__main__":
  tf.test.main()