base_benchmark.py 7.06 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common benchmark class for model garden models."""

import os
import pprint
from typing import Optional
# Import libraries

from absl import logging
import gin
import tensorflow as tf

from tensorflow.python.platform import benchmark  # pylint: disable=unused-import
from official.common import registry_imports  # pylint: disable=unused-import
from official.benchmark import benchmark_lib
from official.benchmark import benchmark_definitions
from official.benchmark import config_utils
from official.core import exp_factory
from official.modeling import hyperparams


def _get_benchmark_params(benchmark_models, eval_tflite=False):
  """Formats benchmark params into a list."""
  parameterized_benchmark_params = []
  for _, benchmarks in benchmark_models.items():
    for name, params in benchmarks.items():
      if eval_tflite:
        execution_modes = ['performance', 'tflite_accuracy']
      else:
        execution_modes = ['performance', 'accuracy']
      for execution_mode in execution_modes:
        benchmark_name = '{}.{}'.format(name, execution_mode)
        benchmark_params = (
            benchmark_name,  # First arg is used by ParameterizedBenchmark.
            benchmark_name,
            params.get('benchmark_function') or benchmark_lib.run_benchmark,
            params['experiment_type'],
            execution_mode,
            params['platform'],
            params['precision'],
            params['metric_bounds'],
            params.get('config_files') or [],
            params.get('params_override') or None,
            params.get('gin_file') or [])
        parameterized_benchmark_params.append(benchmark_params)
  return parameterized_benchmark_params


class BaseBenchmark(  # pylint: disable=undefined-variable
    tf.test.Benchmark, metaclass=benchmark.ParameterizedBenchmark):
  """Common Benchmark.

     benchmark.ParameterizedBenchmark is used to auto create benchmarks from
     benchmark method according to the benchmarks defined in
     benchmark_definitions. The name of the new benchmark methods is
     benchmark__{benchmark_name}. _get_benchmark_params is used to generate the
     benchmark name and args.
  """

  _benchmark_parameters = _get_benchmark_params(
      benchmark_definitions.VISION_BENCHMARKS) + _get_benchmark_params(
          benchmark_definitions.NLP_BENCHMARKS) + _get_benchmark_params(
              benchmark_definitions.QAT_BENCHMARKS,
              True) + _get_benchmark_params(
                  benchmark_definitions.TENSOR_TRACER_BENCHMARKS)

  def __init__(self,
               output_dir=None,
               tpu=None,
               tensorflow_models_path: Optional[str] = None):
    """Initialize class.

    Args:
      output_dir: Base directory to store all output for the test.
      tpu: (optional) TPU name to use in a TPU benchmark.
      tensorflow_models_path: Full path to tensorflow models directory. Needed
        to locate config files.
    """

    if os.getenv('BENCHMARK_OUTPUT_DIR'):
      self.output_dir = os.getenv('BENCHMARK_OUTPUT_DIR')
    elif output_dir:
      self.output_dir = output_dir
    else:
      self.output_dir = '/tmp'

    if os.getenv('BENCHMARK_TPU'):
      self._resolved_tpu = os.getenv('BENCHMARK_TPU')
    elif tpu:
      self._resolved_tpu = tpu
    else:
      self._resolved_tpu = None

    if os.getenv('TENSORFLOW_MODELS_PATH'):
      self._tensorflow_models_path = os.getenv('TENSORFLOW_MODELS_PATH')
    else:
      self._tensorflow_models_path = tensorflow_models_path

  def _get_model_dir(self, folder_name):
    """Returns directory to store info, e.g. saved model and event log."""
    return os.path.join(self.output_dir, folder_name)

  def benchmark(self,
                benchmark_name,
                benchmark_function,
                experiment_type,
                execution_mode,
                platform,
                precision,
                metric_bounds,
                config_files,
                params_override,
                gin_file):

    with gin.unlock_config():
      gin.parse_config_files_and_bindings([
          config_utils.get_config_path(
              g, base_dir=self._tensorflow_models_path) for g in gin_file
      ], None)

    params = exp_factory.get_exp_config(experiment_type)

    for config_file in config_files:
      file_path = config_utils.get_config_path(
          config_file, base_dir=self._tensorflow_models_path)
      params = hyperparams.override_params_dict(
          params, file_path, is_strict=True)
    if params_override:
      params = hyperparams.override_params_dict(
          params, params_override, is_strict=True)
    # platform in format tpu.[n]x[n] or gpu.[n]
    if 'tpu' in platform:
      params.runtime.distribution_strategy = 'tpu'
      params.runtime.tpu = self._resolved_tpu
    elif 'gpu' in platform:
      params.runtime.num_gpus = int(platform.split('.')[-1])
      params.runtime.distribution_strategy = 'mirrored'
    else:
      NotImplementedError('platform :{} is not supported'.format(platform))

    params.runtime.mixed_precision_dtype = precision

    params.validate()
    params.lock()

    tf.io.gfile.makedirs(self._get_model_dir(benchmark_name))
    hyperparams.save_params_dict_to_yaml(
        params,
        os.path.join(self._get_model_dir(benchmark_name), 'params.yaml'))

    pp = pprint.PrettyPrinter()
    logging.info('Final experiment parameters: %s',
                 pp.pformat(params.as_dict()))

    benchmark_data = benchmark_function(
        execution_mode, params, self._get_model_dir(benchmark_name))

    metrics = []
    if execution_mode in ['accuracy', 'tflite_accuracy']:
      for metric_bound in metric_bounds:
        metric = {
            'name': metric_bound['name'],
            'value': benchmark_data['metrics'][metric_bound['name']],
            'min_value': metric_bound['min_value'],
            'max_value': metric_bound['max_value']
        }
        metrics.append(metric)

    metrics.append({'name': 'startup_time',
                    'value': benchmark_data['startup_time']})
    metrics.append({'name': 'exp_per_second',
                    'value': benchmark_data['examples_per_second']})

    self.report_benchmark(
        iters=-1,
        wall_time=benchmark_data['wall_time'],
        metrics=metrics,
        extras={'model_name': benchmark_name.split('.')[0],
                'platform': platform,
                'implementation': 'orbit.ctl',
                'parameters': precision})


if __name__ == '__main__':
  tf.test.main()