object_detection.ipynb 30.6 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Cayt5nCXb3WG"
      },
      "source": [
        "##### Copyright 2022 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "DYL3CXHRb9-f"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VYDmsvURYZjz"
      },
      "source": [
        "# Object detection with Model Garden\n",
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/tfmodels/vision/object_detection\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/docs/vision/object_detection.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/docs/vision/object_detection.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/docs/vision/object_detection.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "\u003c/table\u003e"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "69aQq_PXcUvL"
      },
      "source": [
        "This tutorial fine-tunes a [RetinaNet](https://arxiv.org/abs/1708.02002) with ResNet-50 as backbone model from the [TensorFlow Model Garden](https://pypi.org/project/tf-models-official/) package (tensorflow-models) to detect three different Blood Cells in [BCCD](https://public.roboflow.com/object-detection/bccd) dataset. The RetinaNet is pretrained on [COCO](https://cocodataset.org/) train2017 and evaluated on [COCO](https://cocodataset.org/) val2017\n",
        "\n",
        "[Model Garden](https://www.tensorflow.org/tfmodels) contains a collection of state-of-the-art models, implemented with TensorFlow's high-level APIs. The implementations demonstrate the best practices for modeling, letting users to take full advantage of TensorFlow for their research and product development.\n",
        "\n",
        "This tutorial demonstrates how to:\n",
        "\n",
        "1. Use models from the Tensorflow Model Garden(TFM) package.\n",
        "2. Fine-tune a pre-trained RetinanNet with ResNet-50 as backbone for object detection.\n",
        "3. Export the tuned RetinaNet model"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IeSHlZyUZl6f"
      },
      "source": [
        "## Install necessary dependencies"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Pip0LHj3ZqgL"
      },
      "outputs": [],
      "source": [
        "!pip install -U -q \"tensorflow\" \"tf-models-official\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "H3kS7Y0sZsIj"
      },
      "source": [
        "## Import required libraries"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "hFdVelJ2YbQz"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "import io\n",
        "import pprint\n",
        "import tempfile\n",
        "import matplotlib\n",
        "import numpy as np\n",
        "import tensorflow as tf\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "from PIL import Image\n",
        "from six import BytesIO\n",
        "from IPython import display\n",
        "from urllib.request import urlopen"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TF77J-iMZn_u"
      },
      "source": [
        "## Import required libraries from tensorflow models"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "iT27_SOTY1Dz"
      },
      "outputs": [],
      "source": [
        "import orbit\n",
        "import tensorflow_models as tfm\n",
        "\n",
        "from official.core import exp_factory\n",
        "from official.core import config_definitions as cfg\n",
        "from official.vision.serving import export_saved_model_lib\n",
        "from official.vision.ops.preprocess_ops import normalize_image\n",
        "from official.vision.ops.preprocess_ops import resize_and_crop_image\n",
        "from official.vision.utils.object_detection import visualization_utils\n",
        "from official.vision.dataloaders.tf_example_decoder import TfExampleDecoder\n",
        "\n",
        "pp = pprint.PrettyPrinter(indent=4) # Set Pretty Print Indentation\n",
        "print(tf.__version__) # Check the version of tensorflow used\n",
        "\n",
        "%matplotlib inline"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WGbMG8cpZyKa"
      },
      "source": [
        "## Custom dataset preparation for object detection\n",
        "\n",
        "Models in official repository(of model-garden) requires data in a TFRecords format.\n",
        "\n",
        "\n",
        "Please check [this resource](https://www.tensorflow.org/tutorials/load_data/tfrecord) to learn more about TFRecords data format.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "YcFW-xHRZ1xJ"
      },
      "source": [
        "### clone the model-garden repo as the required data conversion codes are within this model-garden repository"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "tZLidUjiY1xt"
      },
      "outputs": [],
      "source": [
        "!git clone --quiet https://github.com/tensorflow/models.git"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Uq5hcbJ8Z4th"
      },
      "source": [
        "### Upload your custom data in drive or local disk of the notebook and unzip the data"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "rDixpoqoY3Za"
      },
      "outputs": [],
      "source": [
        "!curl -L 'https://public.roboflow.com/ds/ZpYLqHeT0W?key=ZXfZLRnhsc' \u003e './BCCD.v1-bccd.coco.zip'\n",
        "!unzip -q -o './BCCD.v1-bccd.coco.zip' -d './BCC.v1-bccd.coco/'\n",
        "!rm './BCCD.v1-bccd.coco.zip'"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jKJ3MtgeZ5om"
      },
      "source": [
        "### Change directory to vision or data where data conversion tools are available"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "IYM7PIFbY5EL"
      },
      "outputs": [],
      "source": [
        "%cd ./models/"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "GI1h9UChZ8cC"
      },
      "source": [
        "### CLI command to convert data(train data)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "x_8cmB82Y65O"
      },
      "outputs": [],
      "source": [
        "%%bash\n",
        "\n",
        "TRAIN_DATA_DIR='../BCC.v1-bccd.coco/train'\n",
        "TRAIN_ANNOTATION_FILE_DIR='../BCC.v1-bccd.coco/train/_annotations.coco.json'\n",
        "OUTPUT_TFRECORD_TRAIN='../bccd_coco_tfrecords/train'\n",
        "\n",
        "# Need to provide\n",
        "  # 1. image_dir: where images are present\n",
        "  # 2. object_annotations_file: where annotations are listed in json format\n",
        "  # 3. output_file_prefix: where to write output convered TFRecords files\n",
        "python -m official.vision.data.create_coco_tf_record --logtostderr \\\n",
        "  --image_dir=${TRAIN_DATA_DIR} \\\n",
        "  --object_annotations_file=${TRAIN_ANNOTATION_FILE_DIR} \\\n",
        "  --output_file_prefix=$OUTPUT_TFRECORD_TRAIN \\\n",
        "  --num_shards=1"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VuwZpwUoaAKU"
      },
      "source": [
        "### CLI command to convert data(validation data)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "q8mQ8prGY8kh"
      },
      "outputs": [],
      "source": [
        "%%bash\n",
        "\n",
        "VALID_DATA_DIR='../BCC.v1-bccd.coco/valid'\n",
        "VALID_ANNOTATION_FILE_DIR='../BCC.v1-bccd.coco/valid/_annotations.coco.json'\n",
        "OUTPUT_TFRECORD_VALID='../bccd_coco_tfrecords/valid'\n",
        "\n",
        "python -m official.vision.data.create_coco_tf_record --logtostderr \\\n",
        "  --image_dir=$VALID_DATA_DIR \\\n",
        "  --object_annotations_file=$VALID_ANNOTATION_FILE_DIR \\\n",
        "  --output_file_prefix=$OUTPUT_TFRECORD_VALID \\\n",
        "  --num_shards=1"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BYGxNNAXaCW6"
      },
      "source": [
        "### CLI command to convert data(test data)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "-K8qlfstY-Ua"
      },
      "outputs": [],
      "source": [
        "%%bash\n",
        "\n",
        "TEST_DATA_DIR='../BCC.v1-bccd.coco/test'\n",
        "TEST_ANNOTATION_FILE_DIR='../BCC.v1-bccd.coco/test/_annotations.coco.json'\n",
        "OUTPUT_TFRECORD_TEST='../bccd_coco_tfrecords/test'\n",
        "\n",
        "python -m official.vision.data.create_coco_tf_record --logtostderr \\\n",
        "  --image_dir=$TEST_DATA_DIR \\\n",
        "  --object_annotations_file=$TEST_ANNOTATION_FILE_DIR \\\n",
        "  --output_file_prefix=$OUTPUT_TFRECORD_TEST \\\n",
        "  --num_shards=1"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cW7hQEJTaEtj"
      },
      "source": [
        "## Configure the Retinanet Resnet FPN COCO model for custom dataset.\n",
        "\n",
        "Dataset used for fine tuning the checkpoint is Blood Cells Detection (BCCD)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PMGEl7iXZAAF"
      },
      "outputs": [],
      "source": [
        "train_data_input_path = '../bccd_coco_tfrecords/train-00000-of-00001.tfrecord'\n",
        "valid_data_input_path = '../bccd_coco_tfrecords/valid-00000-of-00001.tfrecord'\n",
        "test_data_input_path = '../bccd_coco_tfrecords/test-00000-of-00001.tfrecord'\n",
        "model_dir = '../trained_model/'\n",
        "export_dir ='../exported_model/'"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2DJpKvdeaHF3"
      },
      "source": [
        "In Model Garden, the collections of parameters that define a model are called *configs*. Model Garden can create a config based on a known set of parameters via a [factory](https://en.wikipedia.org/wiki/Factory_method_pattern).\n",
        "\n",
        "\n",
        "Use the `retinanet_resnetfpn_coco` experiment configuration, as defined by `tfm.vision.configs.retinanet.retinanet_resnetfpn_coco`.\n",
        "\n",
        "The configuration defines an experiment to train a RetinanNet with Resnet-50 as backbone, FPN as decoder. Default Configuration is trained on [COCO](https://cocodataset.org/) train2017 and evaluated on [COCO](https://cocodataset.org/) val2017.\n",
        "\n",
        "There are also other alternative experiments available such as\n",
        "`retinanet_resnetfpn_coco`, `retinanet_spinenet_coco`, `fasterrcnn_resnetfpn_coco` and more. One can switch to them by changing the experiment name argument to the `get_exp_config` function.\n",
        "\n",
        "We are going to fine tune the Resnet-50 backbone checkpoint which is already present in the default configuration."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Ie1ObPH9ZBpa"
      },
      "outputs": [],
      "source": [
        "exp_config = exp_factory.get_exp_config('retinanet_resnetfpn_coco')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "LFhjFkw-alba"
      },
      "source": [
        "### Adjust the model and dataset configurations so that it works with custom dataset(in this case `BCCD`)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ej7j6dvIZDQA"
      },
      "outputs": [],
      "source": [
        "batch_size = 8\n",
        "num_classes = 3\n",
        "\n",
        "HEIGHT, WIDTH = 256, 256\n",
        "IMG_SIZE = [HEIGHT, WIDTH, 3]\n",
        "\n",
        "# Backbone config.\n",
        "exp_config.task.freeze_backbone = False\n",
        "exp_config.task.annotation_file = ''\n",
        "\n",
        "# Model config.\n",
        "exp_config.task.model.input_size = IMG_SIZE\n",
        "exp_config.task.model.num_classes = num_classes + 1\n",
        "exp_config.task.model.detection_generator.tflite_post_processing.max_classes_per_detection = exp_config.task.model.num_classes\n",
        "\n",
        "# Training data config.\n",
        "exp_config.task.train_data.input_path = train_data_input_path\n",
        "exp_config.task.train_data.dtype = 'float32'\n",
        "exp_config.task.train_data.global_batch_size = batch_size\n",
        "exp_config.task.train_data.parser.aug_scale_max = 1.0\n",
        "exp_config.task.train_data.parser.aug_scale_min = 1.0\n",
        "\n",
        "# Validation data config.\n",
        "exp_config.task.validation_data.input_path = valid_data_input_path\n",
        "exp_config.task.validation_data.dtype = 'float32'\n",
        "exp_config.task.validation_data.global_batch_size = batch_size"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ROVc1rayaqI1"
      },
      "source": [
        "### Adjust the trainer configuration."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "BZsCVBafZFIE"
      },
      "outputs": [],
      "source": [
        "logical_device_names = [logical_device.name for logical_device in tf.config.list_logical_devices()]\n",
        "\n",
        "if 'GPU' in ''.join(logical_device_names):\n",
        "  print('This may be broken in Colab.')\n",
        "  device = 'GPU'\n",
        "elif 'TPU' in ''.join(logical_device_names):\n",
        "  print('This may be broken in Colab.')\n",
        "  device = 'TPU'\n",
        "else:\n",
        "  print('Running on CPU is slow, so only train for a few steps.')\n",
        "  device = 'CPU'\n",
        "\n",
        "\n",
        "train_steps = 1000\n",
        "exp_config.trainer.steps_per_loop = 100 # steps_per_loop = num_of_training_examples // train_batch_size\n",
        "\n",
        "exp_config.trainer.summary_interval = 100\n",
        "exp_config.trainer.checkpoint_interval = 100\n",
        "exp_config.trainer.validation_interval = 100\n",
        "exp_config.trainer.validation_steps =  100 # validation_steps = num_of_validation_examples // eval_batch_size\n",
        "exp_config.trainer.train_steps = train_steps\n",
        "exp_config.trainer.optimizer_config.warmup.linear.warmup_steps = 100\n",
        "exp_config.trainer.optimizer_config.learning_rate.type = 'cosine'\n",
        "exp_config.trainer.optimizer_config.learning_rate.cosine.decay_steps = train_steps\n",
        "exp_config.trainer.optimizer_config.learning_rate.cosine.initial_learning_rate = 0.1\n",
        "exp_config.trainer.optimizer_config.warmup.linear.warmup_learning_rate = 0.05"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XS6cJfs2atgI"
      },
      "source": [
        "### Print the modified configuration."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "IvfJlqI7ZIcD"
      },
      "outputs": [],
      "source": [
        "pp.pprint(exp_config.as_dict())\n",
        "display.Javascript('google.colab.output.setIframeHeight(\"500px\");')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6o5mbpRBawbs"
      },
      "source": [
        "### Set up the distribution strategy."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "2NvY8QHOZKGr"
      },
      "outputs": [],
      "source": [
        "if exp_config.runtime.mixed_precision_dtype == tf.float16:\n",
        "    tf.keras.mixed_precision.set_global_policy('mixed_float16')\n",
        "\n",
        "if 'GPU' in ''.join(logical_device_names):\n",
        "  distribution_strategy = tf.distribute.MirroredStrategy()\n",
        "elif 'TPU' in ''.join(logical_device_names):\n",
        "  tf.tpu.experimental.initialize_tpu_system()\n",
        "  tpu = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='/device:TPU_SYSTEM:0')\n",
        "  distribution_strategy = tf.distribute.experimental.TPUStrategy(tpu)\n",
        "else:\n",
        "  print('Warning: this will be really slow.')\n",
        "  distribution_strategy = tf.distribute.OneDeviceStrategy(logical_device_names[0])\n",
        "\n",
        "print('Done')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4wPtJgoOa33v"
      },
      "source": [
        "## Create the `Task` object (`tfm.core.base_task.Task`) from the `config_definitions.TaskConfig`.\n",
        "\n",
        "The `Task` object has all the methods necessary for building the dataset, building the model, and running training \u0026 evaluation. These methods are driven by `tfm.core.train_lib.run_experiment`."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Ns9LAsiXZLuX"
      },
      "outputs": [],
      "source": [
        "with distribution_strategy.scope():\n",
        "  task = tfm.core.task_factory.get_task(exp_config.task, logging_dir=model_dir)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vTKbQxDkbArE"
      },
      "source": [
        "## Visualize a batch of the data."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "3RIlbhj0ZNvt"
      },
      "outputs": [],
      "source": [
        "for images, labels in task.build_inputs(exp_config.task.train_data).take(1):\n",
        "  print()\n",
        "  print(f'images.shape: {str(images.shape):16}  images.dtype: {images.dtype!r}')\n",
        "  print(f'labels.keys: {labels.keys()}')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "m-QW7DoKbD8z"
      },
      "source": [
        "### Create category index dictionary to map the labels to coressponding label names."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "MN0sSthbZR-s"
      },
      "outputs": [],
      "source": [
        "category_index={\n",
        "    1: {\n",
        "        'id': 1,\n",
        "        'name': 'Platelets'\n",
        "       },\n",
        "    2: {\n",
        "        'id': 2,\n",
        "        'name': 'RBC'\n",
        "       },\n",
        "    3: {\n",
        "        'id': 3,\n",
        "        'name': 'WBC'\n",
        "       }\n",
        "}\n",
        "tf_ex_decoder = TfExampleDecoder()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AcbmD1pRbGcS"
      },
      "source": [
        "### Helper function for visualizing the results from TFRecords.\n",
        "Use `visualize_boxes_and_labels_on_image_array` from `visualization_utils` to draw boudning boxes on the image."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "wWBeomMMZThI"
      },
      "outputs": [],
      "source": [
        "def show_batch(raw_records, num_of_examples):\n",
        "  plt.figure(figsize=(20, 20))\n",
        "  use_normalized_coordinates=True\n",
        "  min_score_thresh = 0.30\n",
        "  for i, serialized_example in enumerate(raw_records):\n",
        "    plt.subplot(1, 3, i + 1)\n",
        "    decoded_tensors = tf_ex_decoder.decode(serialized_example)\n",
        "    image = decoded_tensors['image'].numpy().astype('uint8')\n",
        "    scores = np.ones(shape=(len(decoded_tensors['groundtruth_boxes'])))\n",
        "    visualization_utils.visualize_boxes_and_labels_on_image_array(\n",
        "        image,\n",
        "        decoded_tensors['groundtruth_boxes'].numpy(),\n",
        "        decoded_tensors['groundtruth_classes'].numpy().astype('int'),\n",
        "        scores,\n",
        "        category_index=category_index,\n",
        "        use_normalized_coordinates=use_normalized_coordinates,\n",
        "        max_boxes_to_draw=200,\n",
        "        min_score_thresh=min_score_thresh,\n",
        "        agnostic_mode=False,\n",
        "        instance_masks=None,\n",
        "        line_thickness=4)\n",
        "\n",
        "    plt.imshow(image)\n",
        "    plt.axis('off')\n",
        "    plt.title(f'Image-{i+1}')\n",
        "  plt.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "R3EgriELbJly"
      },
      "source": [
        "### Visualization of train data\n",
        "\n",
        "The bounding box detection has two components\n",
        "  1. Class label of the object detected (e.g.RBC)\n",
        "  2. Percentage of match between predicted and ground truth bounding boxes.\n",
        "\n",
        "**Note**: The reason of everything is 100% is because we are visualising the groundtruth."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "hdrsciGIZVNO"
      },
      "outputs": [],
      "source": [
        "buffer_size = 20\n",
        "num_of_examples = 3\n",
        "\n",
        "raw_records = tf.data.TFRecordDataset(\n",
        "    exp_config.task.train_data.input_path).shuffle(\n",
        "        buffer_size=buffer_size).take(num_of_examples)\n",
        "show_batch(raw_records, num_of_examples)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IrWkJPyEbMKg"
      },
      "source": [
        "## Train and evaluate.\n",
        "\n",
        "We follow the COCO challenge tradition to evaluate the accuracy of object detection based on mAP(mean Average Precision). Please check [here](https://cocodataset.org/#detection-eval) for detail explanation of how evaluation metrics for detection task is done.\n",
        "\n",
        "**IoU**: is defined as the area of the intersection divided by the area of the union of a predicted bounding box and ground truth bounding box."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "SCjHHXvfZXX1"
      },
      "outputs": [],
      "source": [
        "model, eval_logs = tfm.core.train_lib.run_experiment(\n",
        "    distribution_strategy=distribution_strategy,\n",
        "    task=task,\n",
        "    mode='train_and_eval',\n",
        "    params=exp_config,\n",
        "    model_dir=model_dir,\n",
        "    run_post_eval=True)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2Gd6uHLjbPKW"
      },
      "source": [
        "## Load logs in tensorboard."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Q6iDRUVqZY86"
      },
      "outputs": [],
      "source": [
        "%load_ext tensorboard\n",
        "%tensorboard --logdir '../trained_model/'"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AoL2MIJobReU"
      },
      "source": [
        "## Saving and exporting the trained model.\n",
        "\n",
        "The `keras.Model` object returned by `train_lib.run_experiment` expects the data to be normalized by the dataset loader using the same mean and variance statiscics in `preprocess_ops.normalize_image(image, offset=MEAN_RGB, scale=STDDEV_RGB)`. This export function handles those details, so you can pass `tf.uint8` images and get the correct results."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "CmOBYXdXZah4"
      },
      "outputs": [],
      "source": [
        "export_saved_model_lib.export_inference_graph(\n",
        "    input_type='image_tensor',\n",
        "    batch_size=1,\n",
        "    input_image_size=[HEIGHT, WIDTH],\n",
        "    params=exp_config,\n",
        "    checkpoint_path=tf.train.latest_checkpoint(model_dir),\n",
        "    export_dir=export_dir)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_JhXopm8bU1g"
      },
      "source": [
        "## Inference from trained model"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "EbD4j1uCZcIV"
      },
      "outputs": [],
      "source": [
        "def load_image_into_numpy_array(path):\n",
        "  \"\"\"Load an image from file into a numpy array.\n",
        "\n",
        "  Puts image into numpy array to feed into tensorflow graph.\n",
        "  Note that by convention we put it into a numpy array with shape\n",
        "  (height, width, channels), where channels=3 for RGB.\n",
        "\n",
        "  Args:\n",
        "    path: the file path to the image\n",
        "\n",
        "  Returns:\n",
        "    uint8 numpy array with shape (img_height, img_width, 3)\n",
        "  \"\"\"\n",
        "  image = None\n",
        "  if(path.startswith('http')):\n",
        "    response = urlopen(path)\n",
        "    image_data = response.read()\n",
        "    image_data = BytesIO(image_data)\n",
        "    image = Image.open(image_data)\n",
        "  else:\n",
        "    image_data = tf.io.gfile.GFile(path, 'rb').read()\n",
        "    image = Image.open(BytesIO(image_data))\n",
        "\n",
        "  (im_width, im_height) = image.size\n",
        "  return np.array(image.getdata()).reshape(\n",
        "      (1, im_height, im_width, 3)).astype(np.uint8)\n",
        "\n",
        "\n",
        "\n",
        "def build_inputs_for_object_detection(image, input_image_size):\n",
        "  \"\"\"Builds Object Detection model inputs for serving.\"\"\"\n",
        "  image, _ = resize_and_crop_image(\n",
        "      image,\n",
        "      input_image_size,\n",
        "      padded_size=input_image_size,\n",
        "      aug_scale_min=1.0,\n",
        "      aug_scale_max=1.0)\n",
        "  return image"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "o8bguhK_batq"
      },
      "source": [
        "### Visualize test data."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "sOsDhYmyZd_m"
      },
      "outputs": [],
      "source": [
        "num_of_examples = 3\n",
        "\n",
        "test_ds = tf.data.TFRecordDataset(\n",
        "    '../bccd_coco_tfrecords/test-00000-of-00001.tfrecord').take(\n",
        "        num_of_examples)\n",
        "show_batch(test_ds, num_of_examples)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "kcYnb1Zfbba9"
      },
      "source": [
        "### Importing SavedModel."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "nQ6waz9rZfhy"
      },
      "outputs": [],
      "source": [
        "imported = tf.saved_model.load(export_dir)\n",
        "model_fn = imported.signatures['serving_default']"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CtB4gfZ3bfiC"
      },
      "source": [
        "### Visualize predictions."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "UTSfNZ6yZhEV"
      },
      "outputs": [],
      "source": [
        "input_image_size = (HEIGHT, WIDTH)\n",
        "plt.figure(figsize=(20, 20))\n",
        "min_score_thresh = 0.30 # Change minimum score for threshold to see all bounding boxes confidences.\n",
        "\n",
        "for i, serialized_example in enumerate(test_ds):\n",
        "  plt.subplot(1, 3, i+1)\n",
        "  decoded_tensors = tf_ex_decoder.decode(serialized_example)\n",
        "  image = build_inputs_for_object_detection(decoded_tensors['image'], input_image_size)\n",
        "  image = tf.expand_dims(image, axis=0)\n",
        "  image = tf.cast(image, dtype = tf.uint8)\n",
        "  image_np = image[0].numpy()\n",
        "  result = model_fn(image)\n",
        "  visualization_utils.visualize_boxes_and_labels_on_image_array(\n",
        "      image_np,\n",
        "      result['detection_boxes'][0].numpy(),\n",
        "      result['detection_classes'][0].numpy().astype(int),\n",
        "      result['detection_scores'][0].numpy(),\n",
        "      category_index=category_index,\n",
        "      use_normalized_coordinates=False,\n",
        "      max_boxes_to_draw=200,\n",
        "      min_score_thresh=min_score_thresh,\n",
        "      agnostic_mode=False,\n",
        "      instance_masks=None,\n",
        "      line_thickness=4)\n",
        "  plt.imshow(image_np)\n",
        "  plt.axis('off')\n",
        "\n",
        "plt.show()"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "name": "object_detection.ipynb",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}