image_classification.ipynb 21.5 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Tce3stUlHN0L"
      },
      "source": [
        "##### Copyright 2020 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "tuOe1ymfHZPu"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qFdPvlXBOdUN"
      },
      "source": [
        "# Image classification with Model Garden"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MfBg1C5NB3X0"
      },
      "source": [
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/tfmodels/vision/image_classification\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/docs/vision/image_classification.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/docs/vision/image_classification.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/docs/vision/image_classification.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "\u003c/table\u003e"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ta_nFXaVAqLD"
      },
      "source": [
        "This tutorial fine-tunes a Residual Network (ResNet) from the TensorFlow [Model Garden](https://github.com/tensorflow/models) package (`tensorflow-models`) to classify images in the [CIFAR](https://www.cs.toronto.edu/~kriz/cifar.html) dataset.\n",
        "\n",
        "Model Garden contains a collection of state-of-the-art vision models, implemented with TensorFlow's high-level APIs. The implementations demonstrate the best practices for modeling, letting users to take full advantage of TensorFlow for their research and product development.\n",
        "\n",
        "This tutorial uses a [ResNet](https://arxiv.org/pdf/1512.03385.pdf) model, a state-of-the-art image classifier. This tutorial uses the ResNet-18 model, a convolutional neural network with 18 layers.\n",
        "\n",
        "This tutorial demonstrates how to:\n",
        "1. Use models from the TensorFlow Models package.\n",
        "2. Fine-tune a pre-built ResNet for image classification.\n",
        "3. Export the tuned ResNet model."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "G2FlaQcEPOER"
      },
      "source": [
        "## Setup\n",
        "\n",
        "Install and import the necessary modules."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "XvWfdCrvrV5W"
      },
      "outputs": [],
      "source": [
        "!pip install -U -q \"tf-models-official\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CKYMTPjOE400"
      },
      "source": [
        "Import TensorFlow, TensorFlow Datasets, and a few helper libraries."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Wlon1uoIowmZ"
      },
      "outputs": [],
      "source": [
        "import pprint\n",
        "import tempfile\n",
        "\n",
        "from IPython import display\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "import tensorflow as tf\n",
        "import tensorflow_datasets as tfds"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AVTs0jDd1b24"
      },
      "source": [
        "The `tensorflow_models` package contains the ResNet vision model, and the `official.vision.serving` model contains the function to save and export the tuned model."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "NHT1iiIiBzlC"
      },
      "outputs": [],
      "source": [
        "import tensorflow_models as tfm\n",
        "\n",
        "# These are not in the tfm public API for v2.9. They will be available in v2.10\n",
        "from official.vision.serving import export_saved_model_lib\n",
        "import official.core.train_lib"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "aKv3wdqkQ8FU"
      },
      "source": [
        "## Configure the ResNet-18 model for the Cifar-10 dataset"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5iN8mHEJjKYE"
      },
      "source": [
        "The CIFAR10 dataset contains 60,000 color images in mutually exclusive 10 classes, with 6,000 images in each class.\n",
        "\n",
        "In Model Garden, the collections of parameters that define a model are called *configs*. Model Garden can create a config based on a known set of parameters via a [factory](https://en.wikipedia.org/wiki/Factory_method_pattern).\n",
        "\n",
        "Use the `resnet_imagenet` factory configuration, as defined by `tfm.vision.configs.image_classification.image_classification_imagenet`. The configuration is set up to train ResNet to converge on [ImageNet](https://www.image-net.org/)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "1M77f88Dj2Td"
      },
      "outputs": [],
      "source": [
        "exp_config = tfm.core.exp_factory.get_exp_config('resnet_imagenet')\n",
        "tfds_name = 'cifar10'\n",
        "ds,ds_info = tfds.load(\n",
            "tfds_name,\n",
            "with_info=True)\n",
        "ds_info"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "U6PVwXA-j3E7"
      },
      "source": [
        "Adjust the model and dataset configurations so that it works with Cifar-10 (`cifar10`)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "YWI7faVStQaV"
      },
      "outputs": [],
      "source": [
        "# Configure model\n",
        "exp_config.task.model.num_classes = 10\n",
        "exp_config.task.model.input_size = list(ds_info.features[\"image\"].shape)\n",
        "exp_config.task.model.backbone.resnet.model_id = 18\n",
        "\n",
        "# Configure training and testing data\n",
        "batch_size = 128\n",
        "\n",
        "exp_config.task.train_data.input_path = ''\n",
        "exp_config.task.train_data.tfds_name = tfds_name\n",
        "exp_config.task.train_data.tfds_split = 'train'\n",
        "exp_config.task.train_data.global_batch_size = batch_size\n",
        "\n",
        "exp_config.task.validation_data.input_path = ''\n",
        "exp_config.task.validation_data.tfds_name = tfds_name\n",
        "exp_config.task.validation_data.tfds_split = 'test'\n",
        "exp_config.task.validation_data.global_batch_size = batch_size\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "DE3ggKzzTD56"
      },
      "source": [
        "Adjust the trainer configuration."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "inE_-4UGkLud"
      },
      "outputs": [],
      "source": [
        "logical_device_names = [logical_device.name for logical_device in tf.config.list_logical_devices()]\n",
        "\n",
        "if 'GPU' in ''.join(logical_device_names):\n",
        "  print('This may be broken in Colab.')\n",
        "  device = 'GPU'\n",
        "elif 'TPU' in ''.join(logical_device_names):\n",
        "  print('This may be broken in Colab.')\n",
        "  device = 'TPU'\n",
        "else:\n",
        "  print('Running on CPU is slow, so only train for a few steps.')\n",
        "  device = 'CPU'\n",
        "\n",
        "if device=='CPU':\n",
        "  train_steps = 20\n",
        "  exp_config.trainer.steps_per_loop = 5\n",
        "else:\n",
        "  train_steps=5000\n",
        "  exp_config.trainer.steps_per_loop = 100\n",
        "\n",
        "exp_config.trainer.summary_interval = 100\n",
        "exp_config.trainer.checkpoint_interval = train_steps\n",
        "exp_config.trainer.validation_interval = 1000\n",
        "exp_config.trainer.validation_steps =  ds_info.splits['test'].num_examples // batch_size\n",
        "exp_config.trainer.train_steps = train_steps\n",
        "exp_config.trainer.optimizer_config.learning_rate.type = 'cosine'\n",
        "exp_config.trainer.optimizer_config.learning_rate.cosine.decay_steps = train_steps\n",
        "exp_config.trainer.optimizer_config.learning_rate.cosine.initial_learning_rate = 0.1\n",
        "exp_config.trainer.optimizer_config.warmup.linear.warmup_steps = 100"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5mTcDnBiTOYD"
      },
      "source": [
        "Print the modified configuration."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "tuVfxSBCTK-y"
      },
      "outputs": [],
      "source": [
        "pprint.pprint(exp_config.as_dict())\n",
        "\n",
        "display.Javascript(\"google.colab.output.setIframeHeight('300px');\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "w7_X0UHaRF2m"
      },
      "source": [
        "Set up the distribution strategy."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ykL14FIbTaSt"
      },
      "outputs": [],
      "source": [
        "logical_device_names = [logical_device.name for logical_device in tf.config.list_logical_devices()]\n",
        "\n",
        "if exp_config.runtime.mixed_precision_dtype == tf.float16:\n",
        "    tf.keras.mixed_precision.set_global_policy('mixed_float16')\n",
        "\n",
        "if 'GPU' in ''.join(logical_device_names):\n",
        "  distribution_strategy = tf.distribute.MirroredStrategy()\n",
        "elif 'TPU' in ''.join(logical_device_names):\n",
        "  tf.tpu.experimental.initialize_tpu_system()\n",
        "  tpu = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='/device:TPU_SYSTEM:0')\n",
        "  distribution_strategy = tf.distribute.experimental.TPUStrategy(tpu)\n",
        "else:\n",
        "  print('Warning: this will be really slow.')\n",
        "  distribution_strategy = tf.distribute.OneDeviceStrategy(logical_device_names[0])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "W4k5YH5pTjaK"
      },
      "source": [
        "Create the `Task` object (`tfm.core.base_task.Task`) from the `config_definitions.TaskConfig`.\n",
        "\n",
        "The `Task` object has all the methods necessary for building the dataset, building the model, and running training \u0026 evaluation. These methods are driven by `tfm.core.train_lib.run_experiment`."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "6MgYSH0PtUaW"
      },
      "outputs": [],
      "source": [
        "with distribution_strategy.scope():\n",
        "  model_dir = tempfile.mkdtemp()\n",
        "  task = tfm.core.task_factory.get_task(exp_config.task, logging_dir=model_dir)\n",
        "\n",
        "#  tf.keras.utils.plot_model(task.build_model(), show_shapes=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "IFXEZYdzBKoX"
      },
      "outputs": [],
      "source": [
        "for images, labels in task.build_inputs(exp_config.task.train_data).take(1):\n",
        "  print()\n",
        "  print(f'images.shape: {str(images.shape):16}  images.dtype: {images.dtype!r}')\n",
        "  print(f'labels.shape: {str(labels.shape):16}  labels.dtype: {labels.dtype!r}')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yrwxnGDaRU0U"
      },
      "source": [
        "## Visualize the training data"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "683c255c6c52"
      },
      "source": [
        "The dataloader applies a z-score normalization using \n",
        "`preprocess_ops.normalize_image(image, offset=MEAN_RGB, scale=STDDEV_RGB)`, so the images returned by the dataset can't be directly displayed by standard tools. The visualization code needs to rescale the data into the [0,1] range."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PdmOz2EC0Nx2"
      },
      "outputs": [],
      "source": [
        "plt.hist(images.numpy().flatten());"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7a8582ebde7b"
      },
      "source": [
        "Use `ds_info` (which is an instance of `tfds.core.DatasetInfo`) to lookup the text descriptions of each class ID."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Wq4Wq_CuDG3Q"
      },
      "outputs": [],
      "source": [
        "label_info = ds_info.features['label']\n",
        "label_info.int2str(1)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8c652a6fdbcf"
      },
      "source": [
        "Visualize a batch of the data."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ZKfTxytf1l0d"
      },
      "outputs": [],
      "source": [
        "def show_batch(images, labels, predictions=None):\n",
        "  plt.figure(figsize=(10, 10))\n",
        "  min = images.numpy().min()\n",
        "  max = images.numpy().max()\n",
        "  delta = max - min\n",
        "\n",
        "  for i in range(12):\n",
        "    plt.subplot(6, 6, i + 1)\n",
        "    plt.imshow((images[i]-min) / delta)\n",
        "    if predictions is None:\n",
        "      plt.title(label_info.int2str(labels[i]))\n",
        "    else:\n",
        "      if labels[i] == predictions[i]:\n",
        "        color = 'g'\n",
        "      else:\n",
        "        color = 'r'\n",
        "      plt.title(label_info.int2str(predictions[i]), color=color)\n",
        "    plt.axis(\"off\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "xkA5h_RBtYYU"
      },
      "outputs": [],
      "source": [
        "plt.figure(figsize=(10, 10))\n",
        "for images, labels in task.build_inputs(exp_config.task.train_data).take(1):\n",
        "  show_batch(images, labels)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "v_A9VnL2RbXP"
      },
      "source": [
        "## Visualize the testing data"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AXovuumW_I2z"
      },
      "source": [
        "Visualize a batch of images from the validation dataset."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Ma-_Eb-nte9A"
      },
      "outputs": [],
      "source": [
        "plt.figure(figsize=(10, 10));\n",
        "for images, labels in task.build_inputs(exp_config.task.validation_data).take(1):\n",
        "  show_batch(images, labels)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ihKJt2FHRi2N"
      },
      "source": [
        "## Train and evaluate"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "0AFMNvYxtjXx"
      },
      "outputs": [],
      "source": [
        "model, eval_logs = tfm.core.train_lib.run_experiment(\n",
        "    distribution_strategy=distribution_strategy,\n",
        "    task=task,\n",
        "    mode='train_and_eval',\n",
        "    params=exp_config,\n",
        "    model_dir=model_dir,\n",
        "    run_post_eval=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "gCcHMQYhozmA"
      },
      "outputs": [],
      "source": [
        "#  tf.keras.utils.plot_model(model, show_shapes=True)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "L7nVfxlBA8Gb"
      },
      "source": [
        "Print the `accuracy`, `top_5_accuracy`, and `validation_loss` evaluation metrics."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "0124f938a1b9"
      },
      "outputs": [],
      "source": [
        "for key, value in eval_logs.items():\n",
        "    if isinstance(value, tf.Tensor):\n",
        "      value = value.numpy()\n",
        "    print(f'{key:20}: {value:.3f}')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TDys5bZ1zsml"
      },
      "source": [
        "Run a batch of the processed training data through the model, and view the results"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GhI7zR-Uz1JT"
      },
      "outputs": [],
      "source": [
        "for images, labels in task.build_inputs(exp_config.task.train_data).take(1):\n",
        "  predictions = model.predict(images)\n",
        "  predictions = tf.argmax(predictions, axis=-1)\n",
        "\n",
        "show_batch(images, labels, tf.cast(predictions, tf.int32))\n",
        "\n",
        "if device=='CPU':\n",
        "  plt.suptitle('The model was only trained for a few steps, it is not expected to do well.')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fkE9locGTBgt"
      },
      "source": [
        "## Export a SavedModel"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9669d08c91af"
      },
      "source": [
        "The `keras.Model` object returned by `train_lib.run_experiment` expects the data to be normalized by the dataset loader using the same mean and variance statiscics in `preprocess_ops.normalize_image(image, offset=MEAN_RGB, scale=STDDEV_RGB)`. This export function handles those details, so you can pass `tf.uint8` images and get the correct results.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "AQCFa7BvtmDg"
      },
      "outputs": [],
      "source": [
        "# Saving and exporting the trained model\n",
        "export_saved_model_lib.export_inference_graph(\n",
        "    input_type='image_tensor',\n",
        "    batch_size=1,\n",
        "    input_image_size=[32, 32],\n",
        "    params=exp_config,\n",
        "    checkpoint_path=tf.train.latest_checkpoint(model_dir),\n",
        "    export_dir='./export/')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vVr6DxNqTyLZ"
      },
      "source": [
        "Test the exported model."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "gP7nOvrftsB0"
      },
      "outputs": [],
      "source": [
        "# Importing SavedModel\n",
        "imported = tf.saved_model.load('./export/')\n",
        "model_fn = imported.signatures['serving_default']"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "GiOp2WVIUNUZ"
      },
      "source": [
        "Visualize the predictions."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "BTRMrZQAN4mk"
      },
      "outputs": [],
      "source": [
        "plt.figure(figsize=(10, 10))\n",
        "for data in tfds.load('cifar10', split='test').batch(12).take(1):\n",
        "  predictions = []\n",
        "  for image in data['image']:\n",
        "    index = tf.argmax(model_fn(image[tf.newaxis, ...])['logits'], axis=1)[0]\n",
        "    predictions.append(index)\n",
        "  show_batch(data['image'], data['label'], predictions)\n",
        "\n",
        "  if device=='CPU':\n",
        "    plt.suptitle('The model was only trained for a few steps, it is not expected to do better than random.')"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "name": "classification_with_model_garden.ipynb",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}