decoding_api.ipynb 17.6 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vXLA5InzXydn"
      },
      "source": [
        "##### Copyright 2021 The TensorFlow Authors."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "cellView": "form",
        "id": "RuRlpLL-X0R_"
      },
      "outputs": [],
      "source": [
        "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
        "# you may not use this file except in compliance with the License.\n",
        "# You may obtain a copy of the License at\n",
        "#\n",
        "# https://www.apache.org/licenses/LICENSE-2.0\n",
        "#\n",
        "# Unless required by applicable law or agreed to in writing, software\n",
        "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
        "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
        "# See the License for the specific language governing permissions and\n",
        "# limitations under the License."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2X-XaMSVcLua"
      },
      "source": [
        "# Decoding API"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hYEwGTeCXnnX"
      },
      "source": [
        "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://www.tensorflow.org/tfmodels/nlp/decoding_api\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" /\u003eView on TensorFlow.org\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/models/blob/master/docs/nlp/decoding_api.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/models/blob/master/docs/nlp/decoding_api.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "  \u003ctd\u003e\n",
        "    \u003ca href=\"https://storage.googleapis.com/tensorflow_docs/models/docs/nlp/decoding_api.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/download_logo_32px.png\" /\u003eDownload notebook\u003c/a\u003e\n",
        "  \u003c/td\u003e\n",
        "\u003c/table\u003e"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fsACVQpVSifi"
      },
      "source": [
        "### Install the TensorFlow Model Garden pip package\n",
        "\n",
        "*  `tf-models-official` is the stable Model Garden package. Note that it may not include the latest changes in the `tensorflow_models` github repo. To include latest changes, you may install `tf-models-nightly`,\n",
        "which is the nightly Model Garden package created daily automatically.\n",
        "*  pip will install all models and dependencies automatically."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "G4BhAu01HZcM"
      },
      "outputs": [],
      "source": [
        "!pip uninstall -y opencv-python"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "2j-xhrsVQOQT"
      },
      "outputs": [],
      "source": [
        "!pip install tf-models-official"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "BjP7zwxmskpY"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "import tensorflow as tf\n",
        "\n",
        "from tensorflow_models import nlp"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "T92ccAzlnGqh"
      },
      "outputs": [],
      "source": [
        "def length_norm(length, dtype):\n",
        "  \"\"\"Return length normalization factor.\"\"\"\n",
        "  return tf.pow(((5. + tf.cast(length, dtype)) / 6.), 0.0)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0AWgyo-IQ5sP"
      },
      "source": [
        "## Overview\n",
        "\n",
        "This API provides an interface to experiment with different decoding strategies used for auto-regressive models.\n",
        "\n",
        "1. The following sampling strategies are provided in sampling_module.py, which inherits from the base Decoding class:\n",
        "  *   [top_p](https://arxiv.org/abs/1904.09751) : [github](https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/sampling_module.py#L65) \n",
        "\n",
        "      This implementation chooses the most probable logits with cumulative probabilities up to top_p.\n",
        "\n",
        "  *   [top_k](https://arxiv.org/pdf/1805.04833.pdf) : [github](https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/sampling_module.py#L48)\n",
        "\n",
        "      At each timestep, this implementation samples from top-k logits based on their probability distribution\n",
        "\n",
        "  *   Greedy : [github](https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/sampling_module.py#L26)\n",
        "\n",
        "      This implementation returns the top logits based on probabilities.\n",
        "\n",
        "2. Beam search is provided in beam_search.py. [github](https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/beam_search.py)\n",
        "\n",
        "      This implementation reduces the risk of missing hidden high probability logits by keeping the most likely num_beams of logits at each time step and eventually choosing the logits that has the overall highest probability."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MfOj7oaBRQnS"
      },
      "source": [
        "## Initialize Sampling Module in TF-NLP.\n",
        "\n",
        "\n",
        "\u003e **symbols_to_logits_fn** : This is a closure implemented by the users of the API. The input to this closure will be  \n",
        "```\n",
        "Args:\n",
        "  1] ids [batch_size, .. (index + 1 or 1 if padded_decode is True)],\n",
        "  2] index [scalar] : current decoded step,\n",
        "  3] cache [nested dictionary of tensors].\n",
        "Returns:\n",
        "  1] tensor for next-step logits [batch_size, vocab]\n",
        "  2] the updated_cache [nested dictionary of tensors].\n",
        "```\n",
        "This closure calls the model to predict the logits for the 'index+1' step. The cache is used for faster decoding.\n",
        "Here is a [reference](https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/beam_search_test.py#L88) implementation for the above closure.\n",
        "\n",
        "\n",
        "\u003e **length_normalization_fn** : Closure for returning length normalization parameter.\n",
        "```\n",
        "Args: \n",
        "  1] length : scalar for decoded step index.\n",
        "  2] dtype : data-type of output tensor\n",
        "Returns:\n",
        "  1] value of length normalization factor.\n",
        "Example :\n",
        "  def _length_norm(length, dtype):\n",
        "    return tf.pow(((5. + tf.cast(length, dtype)) / 6.), 0.0)\n",
        "```\n",
        "\n",
        "\u003e **vocab_size** : Output vocabulary size.\n",
        "\n",
        "\u003e **max_decode_length** : Scalar for total number of decoding steps.\n",
        "\n",
        "\u003e **eos_id** : Decoding will stop if all output decoded ids in the batch have this ID.\n",
        "\n",
        "\u003e **padded_decode** : Set this to True if running on TPU. Tensors are padded to max_decoding_length if this is True.\n",
        "\n",
        "\u003e **top_k** : top_k is enabled if this value is \u003e 1.\n",
        "\n",
        "\u003e **top_p** : top_p is enabled if this value is \u003e 0 and \u003c 1.0\n",
        "\n",
        "\u003e **sampling_temperature** : This is used to re-estimate the softmax output. Temperature skews the distribution towards high-probability tokens and lowers the mass in the tail distribution. Value has to be positive. Low temperature is equivalent to greedy and makes the distribution sharper, while high temperature makes it flatter.\n",
        "\n",
        "\u003e **enable_greedy** : By default, this is true and greedy decoding is enabled.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lV1RRp6ihnGX"
      },
      "source": [
        "## Initialize the Model Hyper-parameters"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "eTsGp2gaKLdE"
      },
      "outputs": [],
      "source": [
        "params = {\n",
        "    'num_heads': 2,\n",
        "    'num_layers': 2,\n",
        "    'batch_size': 2,\n",
        "    'n_dims': 256,\n",
        "    'max_decode_length': 4}"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CYXkoplAij01"
      },
      "source": [
        "## Initialize cache. "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "UGvmd0_dRFYI"
      },
      "source": [
        "In auto-regressive architectures like Transformer based [Encoder-Decoder](https://arxiv.org/abs/1706.03762) models, \n",
        "Cache is used for fast sequential decoding.\n",
        "It is a nested dictionary storing pre-computed hidden-states (key and values in the self-attention blocks and  the cross-attention blocks) for every layer."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "D6kfZOOKgkm1"
      },
      "outputs": [],
      "source": [
        "cache = {\n",
        "    'layer_%d' % layer: {\n",
        "        'k': tf.zeros(\n",
        "            shape=[params['batch_size'], params['max_decode_length'], params['num_heads'], params['n_dims'] // params['num_heads']],\n",
        "            dtype=tf.float32),\n",
        "        'v': tf.zeros(\n",
        "            shape=[params['batch_size'], params['max_decode_length'], params['num_heads'], params['n_dims'] // params['num_heads']],\n",
        "            dtype=tf.float32)\n",
        "        } for layer in range(params['num_layers'])\n",
        "    }\n",
        "print(\"cache value shape for layer 1 :\", cache['layer_1']['k'].shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "syl7I5nURPgW"
      },
      "source": [
        "### Create model_fn\n",
        "  In practice, this will be replaced by an actual model implementation such as [here](https://github.com/tensorflow/models/blob/master/official/nlp/transformer/transformer.py#L236)\n",
        "```\n",
        "Args:\n",
        "i : Step that is being decoded.\n",
        "Returns:\n",
        "  logit probabilities of size [batch_size, 1, vocab_size]\n",
        "```\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "AhzSkRisRdB6"
      },
      "outputs": [],
      "source": [
        "probabilities = tf.constant([[[0.3, 0.4, 0.3], [0.3, 0.3, 0.4],\n",
        "                              [0.1, 0.1, 0.8], [0.1, 0.1, 0.8]],\n",
        "                            [[0.2, 0.5, 0.3], [0.2, 0.7, 0.1],\n",
        "                              [0.1, 0.1, 0.8], [0.1, 0.1, 0.8]]])\n",
        "def model_fn(i):\n",
        "  return probabilities[:, i, :]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "FAJ4CpbfVdjr"
      },
      "outputs": [],
      "source": [
        "def _symbols_to_logits_fn():\n",
        "  \"\"\"Calculates logits of the next tokens.\"\"\"\n",
        "  def symbols_to_logits_fn(ids, i, temp_cache):\n",
        "    del ids\n",
        "    logits = tf.cast(tf.math.log(model_fn(i)), tf.float32)\n",
        "    return logits, temp_cache\n",
        "  return symbols_to_logits_fn"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "R_tV3jyWVL47"
      },
      "source": [
        "## Greedy \n",
        "Greedy decoding selects the token id with the highest probability as its next id: $id_t = argmax_{w}P(id | id_{1:t-1})$ at each timestep $t$. The following sketch shows greedy decoding. "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "aGt9idSkVQEJ"
      },
      "outputs": [],
      "source": [
        "greedy_obj = sampling_module.SamplingModule(\n",
        "    length_normalization_fn=None,\n",
        "    dtype=tf.float32,\n",
        "    symbols_to_logits_fn=_symbols_to_logits_fn(),\n",
        "    vocab_size=3,\n",
        "    max_decode_length=params['max_decode_length'],\n",
        "    eos_id=10,\n",
        "    padded_decode=False)\n",
        "ids, _ = greedy_obj.generate(\n",
        "    initial_ids=tf.constant([9, 1]), initial_cache=cache)\n",
        "print(\"Greedy Decoded Ids:\", ids)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "s4pTTsQXVz5O"
      },
      "source": [
        "## top_k sampling\n",
        "In *Top-K* sampling, the *K* most likely next token ids are filtered and the probability mass is redistributed among only those *K* ids. "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "pCLWIn6GV5_G"
      },
      "outputs": [],
      "source": [
        "top_k_obj = sampling_module.SamplingModule(\n",
        "    length_normalization_fn=length_norm,\n",
        "    dtype=tf.float32,\n",
        "    symbols_to_logits_fn=_symbols_to_logits_fn(),\n",
        "    vocab_size=3,\n",
        "    max_decode_length=params['max_decode_length'],\n",
        "    eos_id=10,\n",
        "    sample_temperature=tf.constant(1.0),\n",
        "    top_k=tf.constant(3),\n",
        "    padded_decode=False,\n",
        "    enable_greedy=False)\n",
        "ids, _ = top_k_obj.generate(\n",
        "    initial_ids=tf.constant([9, 1]), initial_cache=cache)\n",
        "print(\"top-k sampled Ids:\", ids)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Jp3G-eE_WI4Y"
      },
      "source": [
        "## top_p sampling\n",
        "Instead of sampling only from the most likely *K* token ids, in *Top-p* sampling chooses from the smallest possible set of ids whose cumulative probability exceeds the probability *p*."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "rEGdIWcuWILO"
      },
      "outputs": [],
      "source": [
        "top_p_obj = sampling_module.SamplingModule(\n",
        "    length_normalization_fn=length_norm,\n",
        "    dtype=tf.float32,\n",
        "    symbols_to_logits_fn=_symbols_to_logits_fn(),\n",
        "    vocab_size=3,\n",
        "    max_decode_length=params['max_decode_length'],\n",
        "    eos_id=10,\n",
        "    sample_temperature=tf.constant(1.0),\n",
        "    top_p=tf.constant(0.9),\n",
        "    padded_decode=False,\n",
        "    enable_greedy=False)\n",
        "ids, _ = top_p_obj.generate(\n",
        "    initial_ids=tf.constant([9, 1]), initial_cache=cache)\n",
        "print(\"top-p sampled Ids:\", ids)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2hcuyJ2VWjDz"
      },
      "source": [
        "## Beam search decoding\n",
        "Beam search reduces the risk of missing hidden high probability token ids by keeping the most likely num_beams of hypotheses at each time step and eventually choosing the hypothesis that has the overall highest probability. "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cJ3WzvSrWmSA"
      },
      "outputs": [],
      "source": [
        "beam_size = 2\n",
        "params['batch_size'] = 1\n",
        "beam_cache = {\n",
        "    'layer_%d' % layer: {\n",
        "        'k': tf.zeros([params['batch_size'], params['max_decode_length'], params['num_heads'], params['n_dims']], dtype=tf.float32),\n",
        "        'v': tf.zeros([params['batch_size'], params['max_decode_length'], params['num_heads'], params['n_dims']], dtype=tf.float32)\n",
        "        } for layer in range(params['num_layers'])\n",
        "    }\n",
        "print(\"cache key shape for layer 1 :\", beam_cache['layer_1']['k'].shape)\n",
        "ids, _ = beam_search.sequence_beam_search(\n",
        "    symbols_to_logits_fn=_symbols_to_logits_fn(),\n",
        "    initial_ids=tf.constant([9], tf.int32),\n",
        "    initial_cache=beam_cache,\n",
        "    vocab_size=3,\n",
        "    beam_size=beam_size,\n",
        "    alpha=0.6,\n",
        "    max_decode_length=params['max_decode_length'],\n",
        "    eos_id=10,\n",
        "    padded_decode=False,\n",
        "    dtype=tf.float32)\n",
        "print(\"Beam search ids:\", ids)"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [],
      "name": "decoding_api_in_tf_nlp.ipynb",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}