maskrcnn.py 12.7 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RetinaNet task definition."""

from absl import logging
import tensorflow as tf
20
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
from official.core import base_task
from official.core import task_factory
from official.vision.beta.configs import maskrcnn as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
26
27
28
29
30
31
32
from official.vision.beta.dataloaders import maskrcnn_input
from official.vision.beta.dataloaders import tf_example_decoder
from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator
from official.vision.beta.losses import maskrcnn_losses
from official.vision.beta.modeling import factory


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def zero_out_disallowed_class_ids(batch_class_ids, allowed_class_ids):
  """Zero out IDs of classes not in allowed_class_ids.

  Args:
    batch_class_ids: A [batch_size, num_instances] int tensor of input
      class IDs.
    allowed_class_ids: A python list of class IDs which we want to allow.

  Returns:
      filtered_class_ids: A [batch_size, num_instances] int tensor with any
        class ID not in allowed_class_ids set to 0.
  """

  allowed_class_ids = tf.constant(allowed_class_ids,
                                  dtype=batch_class_ids.dtype)

  match_ids = (batch_class_ids[:, :, tf.newaxis] ==
               allowed_class_ids[tf.newaxis, tf.newaxis, :])

  match_ids = tf.reduce_any(match_ids, axis=2)
  return tf.where(match_ids, batch_class_ids, tf.zeros_like(batch_class_ids))


Abdullah Rashwan's avatar
Abdullah Rashwan committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
@task_factory.register_task_cls(exp_cfg.MaskRCNNTask)
class MaskRCNNTask(base_task.Task):
  """A single-replica view of training procedure.

  Mask R-CNN task provides artifacts for training/evalution procedures,
  including loading/iterating over Datasets, initializing the model, calculating
  the loss, post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build Mask R-CNN model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_maskrcnn(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
      status = ckpt.restore(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
99
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
      status = ckpt.restore(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
101
102
      status.expect_partial().assert_existing_objects_matched()
    else:
Yeqing Li's avatar
Yeqing Li committed
103
104
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
106
107
108
109
110
111
112
113
114

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self, params, input_context=None):
    """Build input dataset."""
    decoder_cfg = params.decoder.get()
    if params.decoder.type == 'simple_decoder':
      decoder = tf_example_decoder.TfExampleDecoder(
          include_mask=self._task_config.model.include_mask,
115
116
          regenerate_source_id=decoder_cfg.regenerate_source_id,
          mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120
    elif params.decoder.type == 'label_map_decoder':
      decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
          label_map=decoder_cfg.label_map,
          include_mask=self._task_config.model.include_mask,
121
122
          regenerate_source_id=decoder_cfg.regenerate_source_id,
          mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    else:
      raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))

    parser = maskrcnn_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        rpn_match_threshold=params.parser.rpn_match_threshold,
        rpn_unmatched_threshold=params.parser.rpn_unmatched_threshold,
        rpn_batch_size_per_im=params.parser.rpn_batch_size_per_im,
        rpn_fg_fraction=params.parser.rpn_fg_fraction,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances,
        include_mask=self._task_config.model.include_mask,
        mask_crop_size=params.parser.mask_crop_size)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
146
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
147
        params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, outputs, labels, aux_losses=None):
    """Build Mask R-CNN losses."""
    params = self.task_config

    rpn_score_loss_fn = maskrcnn_losses.RpnScoreLoss(
        tf.shape(outputs['box_outputs'])[1])
    rpn_box_loss_fn = maskrcnn_losses.RpnBoxLoss(
        params.losses.rpn_huber_loss_delta)
    rpn_score_loss = tf.reduce_mean(
        rpn_score_loss_fn(
            outputs['rpn_scores'], labels['rpn_score_targets']))
    rpn_box_loss = tf.reduce_mean(
        rpn_box_loss_fn(
            outputs['rpn_boxes'], labels['rpn_box_targets']))

    frcnn_cls_loss_fn = maskrcnn_losses.FastrcnnClassLoss()
    frcnn_box_loss_fn = maskrcnn_losses.FastrcnnBoxLoss(
        params.losses.frcnn_huber_loss_delta)
    frcnn_cls_loss = tf.reduce_mean(
        frcnn_cls_loss_fn(
            outputs['class_outputs'], outputs['class_targets']))
    frcnn_box_loss = tf.reduce_mean(
        frcnn_box_loss_fn(
            outputs['box_outputs'],
            outputs['class_targets'],
            outputs['box_targets']))

    if params.model.include_mask:
      mask_loss_fn = maskrcnn_losses.MaskrcnnLoss()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
184
185
186
187
188
189
      mask_class_targets = outputs['mask_class_targets']
      if self._task_config.allowed_mask_class_ids is not None:
        # Classes with ID=0 are ignored by mask_loss_fn in loss computation.
        mask_class_targets = zero_out_disallowed_class_ids(
            mask_class_targets, self._task_config.allowed_mask_class_ids)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
190
191
192
193
      mask_loss = tf.reduce_mean(
          mask_loss_fn(
              outputs['mask_outputs'],
              outputs['mask_targets'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
              mask_class_targets))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    else:
      mask_loss = 0.0

    model_loss = (
        params.losses.rpn_score_weight * rpn_score_loss +
        params.losses.rpn_box_weight * rpn_box_loss +
        params.losses.frcnn_class_weight * frcnn_cls_loss +
        params.losses.frcnn_box_weight * frcnn_box_loss +
        params.losses.mask_weight * mask_loss)

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

    losses = {
        'total_loss': total_loss,
        'rpn_score_loss': rpn_score_loss,
        'rpn_box_loss': rpn_box_loss,
        'frcnn_cls_loss': frcnn_cls_loss,
        'frcnn_box_loss': frcnn_box_loss,
        'mask_loss': mask_loss,
        'model_loss': model_loss,
    }
    return losses

  def build_metrics(self, training=True):
    """Build detection metrics."""
    metrics = []
    if training:
      metric_names = [
          'total_loss',
          'rpn_score_loss',
          'rpn_box_loss',
          'frcnn_cls_loss',
          'frcnn_box_loss',
          'mask_loss',
          'model_loss'
      ]
      for name in metric_names:
        metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    else:
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file=self._task_config.annotation_file,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
240
241
          include_mask=self._task_config.model.include_mask,
          per_category_metrics=self._task_config.per_category_metrics)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    images, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(
          images,
          image_shape=labels['image_info'][:, 1, :],
          anchor_boxes=labels['anchor_boxes'],
          gt_boxes=labels['gt_boxes'],
          gt_classes=labels['gt_classes'],
          gt_masks=(labels['gt_masks'] if self.task_config.model.include_mask
                    else None),
          training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      losses = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = losses['total_loss'] / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
279
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
280
281
282
283
284
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
285
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: losses['total_loss']}

    if metrics:
      for m in metrics:
        m.update_state(losses[m.name])
        logs.update({m.name: m.result()})

    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    images, labels = inputs

    outputs = model(
        images,
        anchor_boxes=labels['anchor_boxes'],
        image_shape=labels['image_info'][:, 1, :],
        training=False)

    logs = {self.loss: 0}
    coco_model_outputs = {
        'detection_boxes': outputs['detection_boxes'],
        'detection_scores': outputs['detection_scores'],
        'detection_classes': outputs['detection_classes'],
        'num_detections': outputs['num_detections'],
        'source_id': labels['groundtruths']['source_id'],
        'image_info': labels['image_info']
    }
    if self.task_config.model.include_mask:
      coco_model_outputs.update({
          'detection_masks': outputs['detection_masks'],
      })
    logs.update({
        self.coco_metric.name: (labels['groundtruths'], coco_model_outputs)
    })
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric
    self.coco_metric.update_state(
        step_outputs[self.coco_metric.name][0],
        step_outputs[self.coco_metric.name][1])
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    return self.coco_metric.result()