inception_v3_test.py 14.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
22
23
import tensorflow.compat.v1 as tf
import tf_slim as slim
24
25
26
27
28
29
30
31
32
33
34

from nets import inception


class InceptionV3Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000

35
    inputs = tf.random.uniform((batch_size, height, width, 3))
36
    logits, end_points = inception.inception_v3(inputs, num_classes)
37
38
    self.assertTrue(logits.op.name.startswith(
        'InceptionV3/Logits/SpatialSqueeze'))
39
40
41
42
43
44
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

45
46
47
48
49
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = None

50
    inputs = tf.random.uniform((batch_size, height, width, 3))
51
52
53
54
55
56
    net, end_points = inception.inception_v3(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV3/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 2048])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

57
58
59
60
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299

61
    inputs = tf.random.uniform((batch_size, height, width, 3))
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    final_endpoint, end_points = inception.inception_v3_base(inputs)
    self.assertTrue(final_endpoint.op.name.startswith(
        'InceptionV3/Mixed_7c'))
    self.assertListEqual(final_endpoint.get_shape().as_list(),
                         [batch_size, 8, 8, 2048])
    expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                          'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                          'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
                          'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
                          'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
                 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
                 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']

    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
85
        inputs = tf.random.uniform((batch_size, height, width, 3))
86
87
88
89
        out_tensor, end_points = inception.inception_v3_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV3/' + endpoint))
90
        self.assertItemsEqual(endpoints[:index + 1], end_points.keys())
91
92
93
94
95

  def testBuildAndCheckAllEndPointsUptoMixed7c(self):
    batch_size = 5
    height, width = 299, 299

96
    inputs = tf.random.uniform((batch_size, height, width, 3))
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    _, end_points = inception.inception_v3_base(
        inputs, final_endpoint='Mixed_7c')
    endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
                        'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
                        'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
                        'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
                        'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
                        'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
                        'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
                        'Mixed_5b': [batch_size, 35, 35, 256],
                        'Mixed_5c': [batch_size, 35, 35, 288],
                        'Mixed_5d': [batch_size, 35, 35, 288],
                        'Mixed_6a': [batch_size, 17, 17, 768],
                        'Mixed_6b': [batch_size, 17, 17, 768],
                        'Mixed_6c': [batch_size, 17, 17, 768],
                        'Mixed_6d': [batch_size, 17, 17, 768],
                        'Mixed_6e': [batch_size, 17, 17, 768],
                        'Mixed_7a': [batch_size, 8, 8, 1280],
                        'Mixed_7b': [batch_size, 8, 8, 2048],
                        'Mixed_7c': [batch_size, 8, 8, 2048]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 299, 299
127
    inputs = tf.random.uniform((batch_size, height, width, 3))
128
129
130
131
132
133
134
135
136
137
138
    with slim.arg_scope(inception.inception_v3_arg_scope()):
      inception.inception_v3_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(21802784, total_params)

  def testBuildEndPoints(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000

139
    inputs = tf.random.uniform((batch_size, height, width, 3))
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    _, end_points = inception.inception_v3(inputs, num_classes)
    self.assertTrue('Logits' in end_points)
    logits = end_points['Logits']
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('AuxLogits' in end_points)
    aux_logits = end_points['AuxLogits']
    self.assertListEqual(aux_logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Mixed_7c' in end_points)
    pre_pool = end_points['Mixed_7c']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 8, 8, 2048])
    self.assertTrue('PreLogits' in end_points)
    pre_logits = end_points['PreLogits']
    self.assertListEqual(pre_logits.get_shape().as_list(),
                         [batch_size, 1, 1, 2048])

  def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000

163
    inputs = tf.random.uniform((batch_size, height, width, 3))
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    _, end_points = inception.inception_v3(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v3(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=0.5)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(0.5 * original_depth, new_depth)

  def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000

183
    inputs = tf.random.uniform((batch_size, height, width, 3))
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    _, end_points = inception.inception_v3(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v3(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=2.0)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(2.0 * original_depth, new_depth)

  def testRaiseValueErrorWithInvalidDepthMultiplier(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000

203
    inputs = tf.random.uniform((batch_size, height, width, 3))
204
205
206
207
208
209
210
211
212
213
    with self.assertRaises(ValueError):
      _ = inception.inception_v3(inputs, num_classes, depth_multiplier=-0.1)
    with self.assertRaises(ValueError):
      _ = inception.inception_v3(inputs, num_classes, depth_multiplier=0.0)

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 150, 150
    num_classes = 1000

214
    inputs = tf.random.uniform((batch_size, height, width, 3))
215
216
217
218
219
220
221
222
223
    logits, end_points = inception.inception_v3(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Mixed_7c']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 3, 3, 2048])

  def testUnknownImageShape(self):
224
    tf.reset_default_graph()
225
226
227
228
229
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
230
      inputs = tf.placeholder(
231
          tf.float32, shape=(batch_size, None, None, 3))
232
233
234
235
236
      logits, end_points = inception.inception_v3(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
237
      tf.global_variables_initializer().run()
238
239
240
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])

241
  def testGlobalPoolUnknownImageShape(self):
242
    tf.reset_default_graph()
pkulzc's avatar
pkulzc committed
243
244
    batch_size = 1
    height, width = 330, 400
245
246
247
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
248
      inputs = tf.placeholder(
249
          tf.float32, shape=(batch_size, None, None, 3))
250
251
252
253
254
255
      logits, end_points = inception.inception_v3(inputs, num_classes,
                                                  global_pool=True)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
256
      tf.global_variables_initializer().run()
257
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
258
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 11, 2048])
259

260
261
262
263
264
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 299, 299
    num_classes = 1000

265
    inputs = tf.placeholder(tf.float32, (None, height, width, 3))
266
267
268
269
    logits, _ = inception.inception_v3(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
270
    images = tf.random.uniform((batch_size, height, width, 3))
271
272

    with self.test_session() as sess:
273
      sess.run(tf.global_variables_initializer())
274
275
276
277
278
279
280
281
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000

282
    eval_inputs = tf.random.uniform((batch_size, height, width, 3))
283
284
    logits, _ = inception.inception_v3(eval_inputs, num_classes,
                                       is_training=False)
285
    predictions = tf.argmax(input=logits, axis=1)
286
287

    with self.test_session() as sess:
288
      sess.run(tf.global_variables_initializer())
289
290
291
292
293
294
295
296
297
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

298
    train_inputs = tf.random.uniform((train_batch_size, height, width, 3))
299
    inception.inception_v3(train_inputs, num_classes)
300
    eval_inputs = tf.random.uniform((eval_batch_size, height, width, 3))
301
302
    logits, _ = inception.inception_v3(eval_inputs, num_classes,
                                       is_training=False, reuse=True)
303
    predictions = tf.argmax(input=logits, axis=1)
304
305

    with self.test_session() as sess:
306
      sess.run(tf.global_variables_initializer())
307
308
309
310
311
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
312
    images = tf.random.uniform([1, 299, 299, 3])
313
314
315
316
317
    logits, _ = inception.inception_v3(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)

    with self.test_session() as sess:
318
      tf.global_variables_initializer().run()
319
320
321
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

322
323
324
  def testNoBatchNormScaleByDefault(self):
    height, width = 299, 299
    num_classes = 1000
325
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
326
327
328
    with slim.arg_scope(inception.inception_v3_arg_scope()):
      inception.inception_v3(inputs, num_classes, is_training=False)

329
    self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])
330
331
332
333

  def testBatchNormScale(self):
    height, width = 299, 299
    num_classes = 1000
334
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
335
336
337
338
339
    with slim.arg_scope(
        inception.inception_v3_arg_scope(batch_norm_scale=True)):
      inception.inception_v3(inputs, num_classes, is_training=False)

    gamma_names = set(
340
        v.op.name
341
        for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
342
    self.assertGreater(len(gamma_names), 0)
343
    for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
344
345
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

346
347
348

if __name__ == '__main__':
  tf.test.main()