inception_v1_test.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
22
23
import tensorflow.compat.v1 as tf
import tf_slim as slim
24
25
26
27
28
29
30
31
32
33
34

from nets import inception


class InceptionV1Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

35
    inputs = tf.random.uniform((batch_size, height, width, 3))
36
    logits, end_points = inception.inception_v1(inputs, num_classes)
37
38
    self.assertTrue(logits.op.name.startswith(
        'InceptionV1/Logits/SpatialSqueeze'))
39
40
41
42
43
44
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

45
46
47
48
49
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None

50
    inputs = tf.random.uniform((batch_size, height, width, 3))
51
52
53
54
55
56
    net, end_points = inception.inception_v1(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV1/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

57
58
59
60
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

61
    inputs = tf.random.uniform((batch_size, height, width, 3))
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    mixed_6c, end_points = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_6c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
                          'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
                          'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
                          'Mixed_5b', 'Mixed_5c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
                 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
                 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
83
        inputs = tf.random.uniform((batch_size, height, width, 3))
84
85
86
87
        out_tensor, end_points = inception.inception_v1_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV1/' + endpoint))
pkulzc's avatar
pkulzc committed
88
        self.assertItemsEqual(endpoints[:index+1], end_points.keys())
89
90
91
92
93

  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

94
    inputs = tf.random.uniform((batch_size, height, width, 3))
95
96
    _, end_points = inception.inception_v1_base(inputs,
                                                final_endpoint='Mixed_5c')
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    endpoints_shapes = {
        'Conv2d_1a_7x7': [5, 112, 112, 64],
        'MaxPool_2a_3x3': [5, 56, 56, 64],
        'Conv2d_2b_1x1': [5, 56, 56, 64],
        'Conv2d_2c_3x3': [5, 56, 56, 192],
        'MaxPool_3a_3x3': [5, 28, 28, 192],
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }
115
116
117
118
119
120
121
122
123
124
125

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
126
    inputs = tf.random.uniform((batch_size, height, width, 3))
127
128
129
130
131
132
133
134
135
136
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(5607184, total_params)

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112

137
    inputs = tf.random.uniform((batch_size, height, width, 3))
138
139
140
141
142
    mixed_5c, _ = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])

143
144
145
146
147
  def testBuildBaseNetworkWithoutRootBlock(self):
    batch_size = 5
    height, width = 28, 28
    channels = 192

148
    inputs = tf.random.uniform((batch_size, height, width, channels))
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    _, end_points = inception.inception_v1_base(
        inputs, include_root_block=False)
    endpoints_shapes = {
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

172
  def testUnknownImageShape(self):
173
    tf.reset_default_graph()
174
175
176
177
178
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
179
      inputs = tf.placeholder(
180
          tf.float32, shape=(batch_size, None, None, 3))
181
182
183
184
185
186
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
187
      tf.global_variables_initializer().run()
188
189
190
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])

191
  def testGlobalPoolUnknownImageShape(self):
192
    tf.reset_default_graph()
pkulzc's avatar
pkulzc committed
193
194
    batch_size = 1
    height, width = 250, 300
195
196
197
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
198
      inputs = tf.placeholder(
199
          tf.float32, shape=(batch_size, None, None, 3))
200
201
202
203
204
205
206
      logits, end_points = inception.inception_v1(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
207
      tf.global_variables_initializer().run()
208
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
209
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
210

211
212
213
214
215
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

216
    inputs = tf.placeholder(tf.float32, (None, height, width, 3))
217
218
219
220
    logits, _ = inception.inception_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
221
    images = tf.random.uniform((batch_size, height, width, 3))
222
223

    with self.test_session() as sess:
224
      sess.run(tf.global_variables_initializer())
225
226
227
228
229
230
231
232
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000

233
    eval_inputs = tf.random.uniform((batch_size, height, width, 3))
234
235
    logits, _ = inception.inception_v1(eval_inputs, num_classes,
                                       is_training=False)
236
    predictions = tf.argmax(input=logits, axis=1)
237
238

    with self.test_session() as sess:
239
      sess.run(tf.global_variables_initializer())
240
241
242
243
244
245
246
247
248
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 224, 224
    num_classes = 1000

249
    train_inputs = tf.random.uniform((train_batch_size, height, width, 3))
250
    inception.inception_v1(train_inputs, num_classes)
251
    eval_inputs = tf.random.uniform((eval_batch_size, height, width, 3))
252
    logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
253
    predictions = tf.argmax(input=logits, axis=1)
254
255

    with self.test_session() as sess:
256
      sess.run(tf.global_variables_initializer())
257
258
259
260
261
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
262
    images = tf.random.uniform([1, 224, 224, 3])
263
264
265
266
267
    logits, _ = inception.inception_v1(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)

    with self.test_session() as sess:
268
      tf.global_variables_initializer().run()
269
270
271
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

272
273
274
  def testNoBatchNormScaleByDefault(self):
    height, width = 224, 224
    num_classes = 1000
275
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
276
277
278
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1(inputs, num_classes, is_training=False)

279
    self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])
280
281
282
283

  def testBatchNormScale(self):
    height, width = 224, 224
    num_classes = 1000
284
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
285
286
287
288
289
    with slim.arg_scope(
        inception.inception_v1_arg_scope(batch_norm_scale=True)):
      inception.inception_v1(inputs, num_classes, is_training=False)

    gamma_names = set(
290
        v.op.name
291
        for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
292
    self.assertGreater(len(gamma_names), 0)
293
    for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
294
295
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

296
297
298

if __name__ == '__main__':
  tf.test.main()