inception_v4.py 15.3 KB
Newer Older
Alex Kurakin's avatar
Alex Kurakin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition of the Inception V4 architecture.

As described in http://arxiv.org/abs/1602.07261.

  Inception-v4, Inception-ResNet and the Impact of Residual Connections
    on Learning
  Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from nets import inception_utils

slim = tf.contrib.slim


def block_inception_a(inputs, scope=None, reuse=None):
  """Builds Inception-A block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockInceptionA', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
        branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
        branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
      with tf.variable_scope('Branch_3'):
        branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
        branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1')
52
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
Alex Kurakin's avatar
Alex Kurakin committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


def block_reduction_a(inputs, scope=None, reuse=None):
  """Builds Reduction-A block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockReductionA', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID',
                               scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3')
        branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2,
                               padding='VALID', scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
                                   scope='MaxPool_1a_3x3')
72
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
Alex Kurakin's avatar
Alex Kurakin committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95


def block_inception_b(inputs, scope=None, reuse=None):
  """Builds Inception-B block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockInceptionB', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 224, [1, 7], scope='Conv2d_0b_1x7')
        branch_1 = slim.conv2d(branch_1, 256, [7, 1], scope='Conv2d_0c_7x1')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
        branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1')
        branch_2 = slim.conv2d(branch_2, 224, [1, 7], scope='Conv2d_0c_1x7')
        branch_2 = slim.conv2d(branch_2, 224, [7, 1], scope='Conv2d_0d_7x1')
        branch_2 = slim.conv2d(branch_2, 256, [1, 7], scope='Conv2d_0e_1x7')
      with tf.variable_scope('Branch_3'):
        branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
        branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
96
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
Alex Kurakin's avatar
Alex Kurakin committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117


def block_reduction_b(inputs, scope=None, reuse=None):
  """Builds Reduction-B block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockReductionB', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
        branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2,
                               padding='VALID', scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
        branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7')
        branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1')
        branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2,
                               padding='VALID', scope='Conv2d_1a_3x3')
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
                                   scope='MaxPool_1a_3x3')
118
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
Alex Kurakin's avatar
Alex Kurakin committed
119
120
121
122
123
124
125
126
127
128
129
130


def block_inception_c(inputs, scope=None, reuse=None):
  """Builds Inception-C block for Inception v4 network."""
  # By default use stride=1 and SAME padding
  with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                      stride=1, padding='SAME'):
    with tf.variable_scope(scope, 'BlockInceptionC', [inputs], reuse=reuse):
      with tf.variable_scope('Branch_0'):
        branch_0 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
      with tf.variable_scope('Branch_1'):
        branch_1 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
131
        branch_1 = tf.concat(axis=3, values=[
Alex Kurakin's avatar
Alex Kurakin committed
132
133
134
135
136
137
            slim.conv2d(branch_1, 256, [1, 3], scope='Conv2d_0b_1x3'),
            slim.conv2d(branch_1, 256, [3, 1], scope='Conv2d_0c_3x1')])
      with tf.variable_scope('Branch_2'):
        branch_2 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
        branch_2 = slim.conv2d(branch_2, 448, [3, 1], scope='Conv2d_0b_3x1')
        branch_2 = slim.conv2d(branch_2, 512, [1, 3], scope='Conv2d_0c_1x3')
138
        branch_2 = tf.concat(axis=3, values=[
Alex Kurakin's avatar
Alex Kurakin committed
139
140
141
142
143
            slim.conv2d(branch_2, 256, [1, 3], scope='Conv2d_0d_1x3'),
            slim.conv2d(branch_2, 256, [3, 1], scope='Conv2d_0e_3x1')])
      with tf.variable_scope('Branch_3'):
        branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
        branch_3 = slim.conv2d(branch_3, 256, [1, 1], scope='Conv2d_0b_1x1')
144
      return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
Alex Kurakin's avatar
Alex Kurakin committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194


def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None):
  """Creates the Inception V4 network up to the given final endpoint.

  Args:
    inputs: a 4-D tensor of size [batch_size, height, width, 3].
    final_endpoint: specifies the endpoint to construct the network up to.
      It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
      'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
      'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e',
      'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c',
      'Mixed_7d']
    scope: Optional variable_scope.

  Returns:
    logits: the logits outputs of the model.
    end_points: the set of end_points from the inception model.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
  """
  end_points = {}

  def add_and_check_final(name, net):
    end_points[name] = net
    return name == final_endpoint

  with tf.variable_scope(scope, 'InceptionV4', [inputs]):
    with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                        stride=1, padding='SAME'):
      # 299 x 299 x 3
      net = slim.conv2d(inputs, 32, [3, 3], stride=2,
                        padding='VALID', scope='Conv2d_1a_3x3')
      if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points
      # 149 x 149 x 32
      net = slim.conv2d(net, 32, [3, 3], padding='VALID',
                        scope='Conv2d_2a_3x3')
      if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points
      # 147 x 147 x 32
      net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3')
      if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points
      # 147 x 147 x 64
      with tf.variable_scope('Mixed_3a'):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                     scope='MaxPool_0a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, padding='VALID',
                                 scope='Conv2d_0a_3x3')
195
        net = tf.concat(axis=3, values=[branch_0, branch_1])
Alex Kurakin's avatar
Alex Kurakin committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        if add_and_check_final('Mixed_3a', net): return net, end_points

      # 73 x 73 x 160
      with tf.variable_scope('Mixed_4a'):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID',
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, 64, [1, 7], scope='Conv2d_0b_1x7')
          branch_1 = slim.conv2d(branch_1, 64, [7, 1], scope='Conv2d_0c_7x1')
          branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID',
                                 scope='Conv2d_1a_3x3')
210
        net = tf.concat(axis=3, values=[branch_0, branch_1])
Alex Kurakin's avatar
Alex Kurakin committed
211
212
213
214
215
216
217
218
219
220
        if add_and_check_final('Mixed_4a', net): return net, end_points

      # 71 x 71 x 192
      with tf.variable_scope('Mixed_5a'):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, 192, [3, 3], stride=2, padding='VALID',
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                     scope='MaxPool_1a_3x3')
221
        net = tf.concat(axis=3, values=[branch_0, branch_1])
Alex Kurakin's avatar
Alex Kurakin committed
222
223
224
225
        if add_and_check_final('Mixed_5a', net): return net, end_points

      # 35 x 35 x 384
      # 4 x Inception-A blocks
Egor-Krivov's avatar
Egor-Krivov committed
226
      for idx in range(4):
Alex Kurakin's avatar
Alex Kurakin committed
227
228
229
230
231
232
233
234
235
236
237
        block_scope = 'Mixed_5' + chr(ord('b') + idx)
        net = block_inception_a(net, block_scope)
        if add_and_check_final(block_scope, net): return net, end_points

      # 35 x 35 x 384
      # Reduction-A block
      net = block_reduction_a(net, 'Mixed_6a')
      if add_and_check_final('Mixed_6a', net): return net, end_points

      # 17 x 17 x 1024
      # 7 x Inception-B blocks
Egor-Krivov's avatar
Egor-Krivov committed
238
      for idx in range(7):
Alex Kurakin's avatar
Alex Kurakin committed
239
240
241
242
243
244
245
246
247
248
249
        block_scope = 'Mixed_6' + chr(ord('b') + idx)
        net = block_inception_b(net, block_scope)
        if add_and_check_final(block_scope, net): return net, end_points

      # 17 x 17 x 1024
      # Reduction-B block
      net = block_reduction_b(net, 'Mixed_7a')
      if add_and_check_final('Mixed_7a', net): return net, end_points

      # 8 x 8 x 1536
      # 3 x Inception-C blocks
Egor-Krivov's avatar
Egor-Krivov committed
250
      for idx in range(3):
Alex Kurakin's avatar
Alex Kurakin committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        block_scope = 'Mixed_7' + chr(ord('b') + idx)
        net = block_inception_c(net, block_scope)
        if add_and_check_final(block_scope, net): return net, end_points
  raise ValueError('Unknown final endpoint %s' % final_endpoint)


def inception_v4(inputs, num_classes=1001, is_training=True,
                 dropout_keep_prob=0.8,
                 reuse=None,
                 scope='InceptionV4',
                 create_aux_logits=True):
  """Creates the Inception V4 model.

  Args:
    inputs: a 4-D tensor of size [batch_size, height, width, 3].
    num_classes: number of predicted classes.
    is_training: whether is training or not.
    dropout_keep_prob: float, the fraction to keep before final layer.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
james mike dupont's avatar
untie  
james mike dupont committed
272
    create_aux_logits: Whether to include the auxiliary logits.
Alex Kurakin's avatar
Alex Kurakin committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

  Returns:
    logits: the logits outputs of the model.
    end_points: the set of end_points from the inception model.
  """
  end_points = {}
  with tf.variable_scope(scope, 'InceptionV4', [inputs], reuse=reuse) as scope:
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v4_base(inputs, scope=scope)

      with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                          stride=1, padding='SAME'):
        # Auxiliary Head logits
        if create_aux_logits:
          with tf.variable_scope('AuxLogits'):
            # 17 x 17 x 1024
            aux_logits = end_points['Mixed_6h']
            aux_logits = slim.avg_pool2d(aux_logits, [5, 5], stride=3,
                                         padding='VALID',
                                         scope='AvgPool_1a_5x5')
            aux_logits = slim.conv2d(aux_logits, 128, [1, 1],
                                     scope='Conv2d_1b_1x1')
            aux_logits = slim.conv2d(aux_logits, 768,
                                     aux_logits.get_shape()[1:3],
                                     padding='VALID', scope='Conv2d_2a')
            aux_logits = slim.flatten(aux_logits)
            aux_logits = slim.fully_connected(aux_logits, num_classes,
                                              activation_fn=None,
                                              scope='Aux_logits')
            end_points['AuxLogits'] = aux_logits

        # Final pooling and prediction
        with tf.variable_scope('Logits'):
          # 8 x 8 x 1536
          net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
                                scope='AvgPool_1a')
          # 1 x 1 x 1536
          net = slim.dropout(net, dropout_keep_prob, scope='Dropout_1b')
          net = slim.flatten(net, scope='PreLogitsFlatten')
          end_points['PreLogitsFlatten'] = net
          # 1536
          logits = slim.fully_connected(net, num_classes, activation_fn=None,
                                        scope='Logits')
          end_points['Logits'] = logits
          end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
    return logits, end_points
inception_v4.default_image_size = 299


inception_v4_arg_scope = inception_utils.inception_arg_scope