inception_resnet_v2_test.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception_resnet_v2."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from nets import inception


class InceptionTest(tf.test.TestCase):

  def testBuildLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
      logits, endpoints = inception.inception_resnet_v2(inputs, num_classes)
      self.assertTrue('AuxLogits' in endpoints)
      auxlogits = endpoints['AuxLogits']
      self.assertTrue(
          auxlogits.op.name.startswith('InceptionResnetV2/AuxLogits'))
      self.assertListEqual(auxlogits.get_shape().as_list(),
                           [batch_size, num_classes])
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])

  def testBuildWithoutAuxLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, endpoints = inception.inception_resnet_v2(inputs, num_classes,
                                                        create_aux_logits=False)
      self.assertTrue('AuxLogits' not in endpoints)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])

  def testBuildEndPoints(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      _, end_points = inception.inception_resnet_v2(inputs, num_classes)
      self.assertTrue('Logits' in end_points)
      logits = end_points['Logits']
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      self.assertTrue('AuxLogits' in end_points)
      aux_logits = end_points['AuxLogits']
      self.assertListEqual(aux_logits.get_shape().as_list(),
                           [batch_size, num_classes])
72
      pre_pool = end_points['Conv2d_7b_1x1']
73
74
75
      self.assertListEqual(pre_pool.get_shape().as_list(),
                           [batch_size, 8, 8, 1536])

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_resnet_v2_base(inputs)
    self.assertTrue(net.op.name.startswith('InceptionResnetV2/Conv2d_7b_1x1'))
    self.assertListEqual(net.get_shape().as_list(),
                         [batch_size, 8, 8, 1536])
    expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                          'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                          'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
                          'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
                 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint=endpoint)
        if endpoint != 'PreAuxLogits':
          self.assertTrue(out_tensor.op.name.startswith(
              'InceptionResnetV2/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points)

  def testBuildAndCheckAllEndPointsUptoPreAuxLogits(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits')
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
                        'Conv2d_2a_3x3': [5, 147, 147, 32],
                        'Conv2d_2b_3x3': [5, 147, 147, 64],
                        'MaxPool_3a_3x3': [5, 73, 73, 64],
                        'Conv2d_3b_1x1': [5, 73, 73, 80],
                        'Conv2d_4a_3x3': [5, 71, 71, 192],
                        'MaxPool_5a_3x3': [5, 35, 35, 192],
                        'Mixed_5b': [5, 35, 35, 320],
                        'Mixed_6a': [5, 17, 17, 1088],
                        'PreAuxLogits': [5, 17, 17, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 150, 150, 32],
                        'Conv2d_2a_3x3': [5, 150, 150, 32],
                        'Conv2d_2b_3x3': [5, 150, 150, 64],
                        'MaxPool_3a_3x3': [5, 75, 75, 64],
                        'Conv2d_3b_1x1': [5, 75, 75, 80],
                        'Conv2d_4a_3x3': [5, 75, 75, 192],
                        'MaxPool_5a_3x3': [5, 38, 38, 192],
                        'Mixed_5b': [5, 38, 38, 320],
                        'Mixed_6a': [5, 19, 19, 1088],
                        'PreAuxLogits': [5, 19, 19, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits', output_stride=8)
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
                        'Conv2d_2a_3x3': [5, 147, 147, 32],
                        'Conv2d_2b_3x3': [5, 147, 147, 64],
                        'MaxPool_3a_3x3': [5, 73, 73, 64],
                        'Conv2d_3b_1x1': [5, 73, 73, 80],
                        'Conv2d_4a_3x3': [5, 71, 71, 192],
                        'MaxPool_5a_3x3': [5, 35, 35, 192],
                        'Mixed_5b': [5, 35, 35, 320],
                        'Mixed_6a': [5, 33, 33, 1088],
                        'PreAuxLogits': [5, 33, 33, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

186
187
188
189
190
191
192
193
194
195
196
  def testVariablesSetDevice(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      # Force all Variables to reside on the device.
      with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
        inception.inception_resnet_v2(inputs, num_classes)
      with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
        inception.inception_resnet_v2(inputs, num_classes)
197
      for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
198
        self.assertDeviceEqual(v.device, '/cpu:0')
199
      for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
200
201
202
203
204
205
206
207
208
209
210
211
        self.assertDeviceEqual(v.device, '/gpu:0')

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 150, 150
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, end_points = inception.inception_resnet_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
212
      pre_pool = end_points['Conv2d_7b_1x1']
213
214
215
216
217
218
219
220
221
222
223
224
225
226
      self.assertListEqual(pre_pool.get_shape().as_list(),
                           [batch_size, 3, 3, 1536])

  def testUnknownBatchSize(self):
    batch_size = 1
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (None, height, width, 3))
      logits, _ = inception.inception_resnet_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [None, num_classes])
      images = tf.random_uniform((batch_size, height, width, 3))
227
      sess.run(tf.global_variables_initializer())
228
229
230
231
232
233
234
235
236
237
238
239
240
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    with self.test_session() as sess:
      eval_inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = inception.inception_resnet_v2(eval_inputs,
                                                num_classes,
                                                is_training=False)
      predictions = tf.argmax(logits, 1)
241
      sess.run(tf.global_variables_initializer())
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_resnet_v2(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_resnet_v2(eval_inputs,
                                                num_classes,
                                                is_training=False,
                                                reuse=True)
      predictions = tf.argmax(logits, 1)
259
      sess.run(tf.global_variables_initializer())
260
261
262
263
264
265
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))


if __name__ == '__main__':
  tf.test.main()