"vscode:/vscode.git/clone" did not exist on "3271cf75d3f01895dcada70830a73edf95ef23a2"
per_image_evaluation.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Evaluate Object Detection result on a single image.

Annotate each detected result as true positives or false positive according to
a predefined IOU ratio. Non Maximum Supression is used by default. Multi class
detection is supported by default.
"""
import numpy as np

from object_detection.utils import np_box_list
from object_detection.utils import np_box_list_ops


class PerImageEvaluation(object):
  """Evaluate detection result of a single image."""

  def __init__(self,
               num_groundtruth_classes,
               matching_iou_threshold=0.5,
               nms_iou_threshold=0.3,
               nms_max_output_boxes=50):
    """Initialized PerImageEvaluation by evaluation parameters.

    Args:
      num_groundtruth_classes: Number of ground truth object classes
      matching_iou_threshold: A ratio of area intersection to union, which is
          the threshold to consider whether a detection is true positive or not
      nms_iou_threshold: IOU threshold used in Non Maximum Suppression.
      nms_max_output_boxes: Number of maximum output boxes in NMS.
    """
    self.matching_iou_threshold = matching_iou_threshold
    self.nms_iou_threshold = nms_iou_threshold
    self.nms_max_output_boxes = nms_max_output_boxes
    self.num_groundtruth_classes = num_groundtruth_classes

  def compute_object_detection_metrics(self, detected_boxes, detected_scores,
                                       detected_class_labels, groundtruth_boxes,
                                       groundtruth_class_labels,
                                       groundtruth_is_difficult_lists):
    """Compute Object Detection related metrics from a single image.

    Args:
      detected_boxes: A float numpy array of shape [N, 4], representing N
          regions of detected object regions.
          Each row is of the format [y_min, x_min, y_max, x_max]
      detected_scores: A float numpy array of shape [N, 1], representing
          the confidence scores of the detected N object instances.
      detected_class_labels: A integer numpy array of shape [N, 1], repreneting
          the class labels of the detected N object instances.
      groundtruth_boxes: A float numpy array of shape [M, 4], representing M
          regions of object instances in ground truth
      groundtruth_class_labels: An integer numpy array of shape [M, 1],
          representing M class labels of object instances in ground truth
      groundtruth_is_difficult_lists: A boolean numpy array of length M denoting
          whether a ground truth box is a difficult instance or not

    Returns:
      scores: A list of C float numpy arrays. Each numpy array is of
          shape [K, 1], representing K scores detected with object class
          label c
      tp_fp_labels: A list of C boolean numpy arrays. Each numpy array
          is of shape [K, 1], representing K True/False positive label of
          object instances detected with class label c
      is_class_correctly_detected_in_image: a numpy integer array of
          shape [C, 1], indicating whether the correponding class has a least
          one instance being correctly detected in the image
    """
    detected_boxes, detected_scores, detected_class_labels = (
        self._remove_invalid_boxes(detected_boxes, detected_scores,
                                   detected_class_labels))
    scores, tp_fp_labels = self._compute_tp_fp(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels,
        groundtruth_is_difficult_lists)
    is_class_correctly_detected_in_image = self._compute_cor_loc(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels)
    return scores, tp_fp_labels, is_class_correctly_detected_in_image

  def _compute_cor_loc(self, detected_boxes, detected_scores,
                       detected_class_labels, groundtruth_boxes,
                       groundtruth_class_labels):
    """Compute CorLoc score for object detection result.

    Args:
      detected_boxes: A float numpy array of shape [N, 4], representing N
          regions of detected object regions.
          Each row is of the format [y_min, x_min, y_max, x_max]
      detected_scores: A float numpy array of shape [N, 1], representing
          the confidence scores of the detected N object instances.
      detected_class_labels: A integer numpy array of shape [N, 1], repreneting
          the class labels of the detected N object instances.
      groundtruth_boxes: A float numpy array of shape [M, 4], representing M
          regions of object instances in ground truth
      groundtruth_class_labels: An integer numpy array of shape [M, 1],
          representing M class labels of object instances in ground truth
    Returns:
      is_class_correctly_detected_in_image: a numpy integer array of
          shape [C, 1], indicating whether the correponding class has a least
          one instance being correctly detected in the image
    """
    is_class_correctly_detected_in_image = np.zeros(
        self.num_groundtruth_classes, dtype=int)
    for i in range(self.num_groundtruth_classes):
      gt_boxes_at_ith_class = groundtruth_boxes[
          groundtruth_class_labels == i, :]
      detected_boxes_at_ith_class = detected_boxes[
          detected_class_labels == i, :]
      detected_scores_at_ith_class = detected_scores[detected_class_labels == i]
      is_class_correctly_detected_in_image[i] = (
          self._compute_is_aclass_correctly_detected_in_image(
              detected_boxes_at_ith_class, detected_scores_at_ith_class,
              gt_boxes_at_ith_class))

    return is_class_correctly_detected_in_image

  def _compute_is_aclass_correctly_detected_in_image(
      self, detected_boxes, detected_scores, groundtruth_boxes):
    """Compute CorLoc score for a single class.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates

    Returns:
      is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
          class is correctly detected in the image or not
    """
    if detected_boxes.size > 0:
      if groundtruth_boxes.size > 0:
        max_score_id = np.argmax(detected_scores)
        detected_boxlist = np_box_list.BoxList(
            np.expand_dims(detected_boxes[max_score_id, :], axis=0))
        gt_boxlist = np_box_list.BoxList(groundtruth_boxes)
        iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
        if np.max(iou) >= self.matching_iou_threshold:
          return 1
    return 0

  def _compute_tp_fp(self, detected_boxes, detected_scores,
                     detected_class_labels, groundtruth_boxes,
                     groundtruth_class_labels, groundtruth_is_difficult_lists):
    """Labels true/false positives of detections of an image across all classes.

    Args:
      detected_boxes: A float numpy array of shape [N, 4], representing N
          regions of detected object regions.
          Each row is of the format [y_min, x_min, y_max, x_max]
      detected_scores: A float numpy array of shape [N, 1], representing
          the confidence scores of the detected N object instances.
      detected_class_labels: A integer numpy array of shape [N, 1], repreneting
          the class labels of the detected N object instances.
      groundtruth_boxes: A float numpy array of shape [M, 4], representing M
          regions of object instances in ground truth
      groundtruth_class_labels: An integer numpy array of shape [M, 1],
          representing M class labels of object instances in ground truth
      groundtruth_is_difficult_lists: A boolean numpy array of length M denoting
          whether a ground truth box is a difficult instance or not

    Returns:
      result_scores: A list of float numpy arrays. Each numpy array is of
          shape [K, 1], representing K scores detected with object class
          label c
      result_tp_fp_labels: A list of boolean numpy array. Each numpy array is of
          shape [K, 1], representing K True/False positive label of object
          instances detected with class label c
    """
    result_scores = []
    result_tp_fp_labels = []
    for i in range(self.num_groundtruth_classes):
      gt_boxes_at_ith_class = groundtruth_boxes[(groundtruth_class_labels == i
                                                ), :]
      groundtruth_is_difficult_list_at_ith_class = (
          groundtruth_is_difficult_lists[groundtruth_class_labels == i])
      detected_boxes_at_ith_class = detected_boxes[(detected_class_labels == i
                                                   ), :]
      detected_scores_at_ith_class = detected_scores[detected_class_labels == i]
      scores, tp_fp_labels = self._compute_tp_fp_for_single_class(
          detected_boxes_at_ith_class, detected_scores_at_ith_class,
          gt_boxes_at_ith_class, groundtruth_is_difficult_list_at_ith_class)
      result_scores.append(scores)
      result_tp_fp_labels.append(tp_fp_labels)
    return result_scores, result_tp_fp_labels

  def _remove_invalid_boxes(self, detected_boxes, detected_scores,
                            detected_class_labels):
    valid_indices = np.logical_and(detected_boxes[:, 0] < detected_boxes[:, 2],
                                   detected_boxes[:, 1] < detected_boxes[:, 3])
    return (detected_boxes[valid_indices, :], detected_scores[valid_indices],
            detected_class_labels[valid_indices])

  def _compute_tp_fp_for_single_class(self, detected_boxes, detected_scores,
                                      groundtruth_boxes,
                                      groundtruth_is_difficult_list):
    """Labels boxes detected with the same class from the same image as tp/fp.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      groundtruth_is_difficult_list: A boolean numpy array of length M denoting
          whether a ground truth box is a difficult instance or not

    Returns:
      scores: A numpy array representing the detection scores
      tp_fp_labels: a boolean numpy array indicating whether a detection is a
      true positive.

    """
    if detected_boxes.size == 0:
      return np.array([], dtype=float), np.array([], dtype=bool)
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)

    scores = detected_boxlist.get_field('scores')

    if groundtruth_boxes.size == 0:
      return scores, np.zeros(detected_boxlist.num_boxes(), dtype=bool)
    gt_boxlist = np_box_list.BoxList(groundtruth_boxes)

    iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
    max_overlap_gt_ids = np.argmax(iou, axis=1)
    is_gt_box_detected = np.zeros(gt_boxlist.num_boxes(), dtype=bool)
    tp_fp_labels = np.zeros(detected_boxlist.num_boxes(), dtype=bool)
    is_matched_to_difficult_box = np.zeros(
        detected_boxlist.num_boxes(), dtype=bool)
    for i in range(detected_boxlist.num_boxes()):
      gt_id = max_overlap_gt_ids[i]
      if iou[i, gt_id] >= self.matching_iou_threshold:
        if not groundtruth_is_difficult_list[gt_id]:
          if not is_gt_box_detected[gt_id]:
            tp_fp_labels[i] = True
            is_gt_box_detected[gt_id] = True
        else:
          is_matched_to_difficult_box[i] = True
    return scores[~is_matched_to_difficult_box], tp_fp_labels[
        ~is_matched_to_difficult_box]