"tests/nn/data_parallel/test_features_sharded_ddp.py" did not exist on "3e2547c3b7d9b9c194f39f28184d67037cd413fd"
metrics.py 5.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions for computing metrics like precision, recall, CorLoc and etc."""
from __future__ import division

import numpy as np
20
from six import moves
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


def compute_precision_recall(scores, labels, num_gt):
  """Compute precision and recall.

  Args:
    scores: A float numpy array representing detection score
    labels: A boolean numpy array representing true/false positive labels
    num_gt: Number of ground truth instances

  Raises:
    ValueError: if the input is not of the correct format

  Returns:
    precision: Fraction of positive instances over detected ones. This value is
      None if no ground truth labels are present.
    recall: Fraction of detected positive instance over all positive instances.
      This value is None if no ground truth labels are present.

  """
  if not isinstance(
      labels, np.ndarray) or labels.dtype != np.bool or len(labels.shape) != 1:
    raise ValueError("labels must be single dimension bool numpy array")

  if not isinstance(
      scores, np.ndarray) or len(scores.shape) != 1:
    raise ValueError("scores must be single dimension numpy array")

  if num_gt < np.sum(labels):
    raise ValueError("Number of true positives must be smaller than num_gt.")

  if len(scores) != len(labels):
    raise ValueError("scores and labels must be of the same size.")

  if num_gt == 0:
    return None, None

  sorted_indices = np.argsort(scores)
  sorted_indices = sorted_indices[::-1]
  labels = labels.astype(int)
  true_positive_labels = labels[sorted_indices]
  false_positive_labels = 1 - true_positive_labels
  cum_true_positives = np.cumsum(true_positive_labels)
  cum_false_positives = np.cumsum(false_positive_labels)
  precision = cum_true_positives.astype(float) / (
      cum_true_positives + cum_false_positives)
  recall = cum_true_positives.astype(float) / num_gt
  return precision, recall


def compute_average_precision(precision, recall):
  """Compute Average Precision according to the definition in VOCdevkit.

  Precision is modified to ensure that it does not decrease as recall
  decrease.

  Args:
    precision: A float [N, 1] numpy array of precisions
    recall: A float [N, 1] numpy array of recalls

  Raises:
    ValueError: if the input is not of the correct format

  Returns:
    average_precison: The area under the precision recall curve. NaN if
      precision and recall are None.

  """
  if precision is None:
    if recall is not None:
      raise ValueError("If precision is None, recall must also be None")
    return np.NAN

  if not isinstance(precision, np.ndarray) or not isinstance(recall,
                                                             np.ndarray):
    raise ValueError("precision and recall must be numpy array")
  if precision.dtype != np.float or recall.dtype != np.float:
    raise ValueError("input must be float numpy array.")
  if len(precision) != len(recall):
    raise ValueError("precision and recall must be of the same size.")
  if not precision.size:
    return 0.0
  if np.amin(precision) < 0 or np.amax(precision) > 1:
    raise ValueError("Precision must be in the range of [0, 1].")
  if np.amin(recall) < 0 or np.amax(recall) > 1:
    raise ValueError("recall must be in the range of [0, 1].")
107
  if not all(recall[i] <= recall[i + 1] for i in moves.range(len(recall) - 1)):
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    raise ValueError("recall must be a non-decreasing array")

  recall = np.concatenate([[0], recall, [1]])
  precision = np.concatenate([[0], precision, [0]])

  # Preprocess precision to be a non-decreasing array
  for i in range(len(precision) - 2, -1, -1):
    precision[i] = np.maximum(precision[i], precision[i + 1])

  indices = np.where(recall[1:] != recall[:-1])[0] + 1
  average_precision = np.sum(
      (recall[indices] - recall[indices - 1]) * precision[indices])
  return average_precision


def compute_cor_loc(num_gt_imgs_per_class,
                    num_images_correctly_detected_per_class):
  """Compute CorLoc according to the definition in the following paper.

  https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf

  Returns nans if there are no ground truth images for a class.

  Args:
    num_gt_imgs_per_class: 1D array, representing number of images containing
        at least one object instance of a particular class
    num_images_correctly_detected_per_class: 1D array, representing number of
        images that are correctly detected at least one object instance of a
        particular class

  Returns:
    corloc_per_class: A float numpy array represents the corloc score of each
      class
  """
  return np.where(
      num_gt_imgs_per_class == 0,
      np.nan,
      num_images_correctly_detected_per_class / num_gt_imgs_per_class)