exporter.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to export object detection inference graph."""
import logging
import os
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.client import session
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import importer
from tensorflow.python.platform import gfile
25
from tensorflow.python.saved_model import signature_constants
26
27
28
29
30
31
32
33
from tensorflow.python.training import saver as saver_lib
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder

slim = tf.contrib.slim


34
35
# TODO: Replace with freeze_graph.freeze_graph_with_def_protos when
# newer version of Tensorflow becomes more common.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def freeze_graph_with_def_protos(
    input_graph_def,
    input_saver_def,
    input_checkpoint,
    output_node_names,
    restore_op_name,
    filename_tensor_name,
    clear_devices,
    initializer_nodes,
    variable_names_blacklist=''):
  """Converts all variables in a graph and checkpoint into constants."""
  del restore_op_name, filename_tensor_name  # Unused by updated loading code.

  # 'input_checkpoint' may be a prefix if we're using Saver V2 format
  if not saver_lib.checkpoint_exists(input_checkpoint):
51
52
    raise ValueError(
        'Input checkpoint "' + input_checkpoint + '" does not exist!')
53
54

  if not output_node_names:
55
56
    raise ValueError(
        'You must supply the name of a node to --output_node_names.')
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

  # Remove all the explicit device specifications for this node. This helps to
  # make the graph more portable.
  if clear_devices:
    for node in input_graph_def.node:
      node.device = ''

  _ = importer.import_graph_def(input_graph_def, name='')

  with session.Session() as sess:
    if input_saver_def:
      saver = saver_lib.Saver(saver_def=input_saver_def)
      saver.restore(sess, input_checkpoint)
    else:
      var_list = {}
      reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
      var_to_shape_map = reader.get_variable_to_shape_map()
      for key in var_to_shape_map:
        try:
          tensor = sess.graph.get_tensor_by_name(key + ':0')
        except KeyError:
          # This tensor doesn't exist in the graph (for example it's
          # 'global_step' or a similar housekeeping element) so skip it.
          continue
        var_list[key] = tensor
      saver = saver_lib.Saver(var_list=var_list)
      saver.restore(sess, input_checkpoint)
      if initializer_nodes:
        sess.run(initializer_nodes)

    variable_names_blacklist = (variable_names_blacklist.split(',') if
                                variable_names_blacklist else None)
    output_graph_def = graph_util.convert_variables_to_constants(
        sess,
        input_graph_def,
        output_node_names.split(','),
        variable_names_blacklist=variable_names_blacklist)

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  return output_graph_def


def get_frozen_graph_def(inference_graph_def, use_moving_averages,
                         input_checkpoint, output_node_names):
  """Freezes all variables in a graph definition."""
  saver = None
  if use_moving_averages:
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)
  else:
    saver = tf.train.Saver()

  frozen_graph_def = freeze_graph_with_def_protos(
      input_graph_def=inference_graph_def,
      input_saver_def=saver.as_saver_def(),
      input_checkpoint=input_checkpoint,
      output_node_names=output_node_names,
      restore_op_name='save/restore_all',
      filename_tensor_name='save/Const:0',
      clear_devices=True,
      initializer_nodes='')
  return frozen_graph_def
119
120
121
122
123
124


# TODO: Support batch tf example inputs.
def _tf_example_input_placeholder():
  tf_example_placeholder = tf.placeholder(
      tf.string, shape=[], name='tf_example')
Derek Chow's avatar
Derek Chow committed
125
  tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
126
127
128
129
130
131
132
133
134
135
      tf_example_placeholder)
  image = tensor_dict[fields.InputDataFields.image]
  return tf.expand_dims(image, axis=0)


def _image_tensor_input_placeholder():
  return tf.placeholder(dtype=tf.uint8,
                        shape=(1, None, None, 3),
                        name='image_tensor')

136
137
138
139
140
141
142
143
144
145

def _encoded_image_string_tensor_input_placeholder():
  image_str = tf.placeholder(dtype=tf.string,
                             shape=[],
                             name='encoded_image_string_tensor')
  image_tensor = tf.image.decode_image(image_str, channels=3)
  image_tensor.set_shape((None, None, 3))
  return tf.expand_dims(image_tensor, axis=0)


146
input_placeholder_fn_map = {
147
148
149
    'image_tensor': _image_tensor_input_placeholder,
    'encoded_image_string_tensor':
    _encoded_image_string_tensor_input_placeholder,
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    'tf_example': _tf_example_input_placeholder,
}


def _add_output_tensor_nodes(postprocessed_tensors):
  """Adds output nodes for detection boxes and scores.

  Adds the following nodes for output tensors -
    * num_detections: float32 tensor of shape [batch_size].
    * detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
      containing detected boxes.
    * detection_scores: float32 tensor of shape [batch_size, num_boxes]
      containing scores for the detected boxes.
    * detection_classes: float32 tensor of shape [batch_size, num_boxes]
      containing class predictions for the detected boxes.
165
166
167
    * detection_masks: (Optional) float32 tensor of shape
      [batch_size, num_boxes, mask_height, mask_width] containing masks for each
      detection box.
168
169
170
171
172
173

  Args:
    postprocessed_tensors: a dictionary containing the following fields
      'detection_boxes': [batch, max_detections, 4]
      'detection_scores': [batch, max_detections]
      'detection_classes': [batch, max_detections]
174
175
      'detection_masks': [batch, max_detections, mask_height, mask_width]
        (optional).
176
      'num_detections': [batch]
177
178
179

  Returns:
    A tensor dict containing the added output tensor nodes.
180
181
182
183
184
  """
  label_id_offset = 1
  boxes = postprocessed_tensors.get('detection_boxes')
  scores = postprocessed_tensors.get('detection_scores')
  classes = postprocessed_tensors.get('detection_classes') + label_id_offset
185
  masks = postprocessed_tensors.get('detection_masks')
186
  num_detections = postprocessed_tensors.get('num_detections')
187
188
189
190
191
  outputs = {}
  outputs['detection_boxes'] = tf.identity(boxes, name='detection_boxes')
  outputs['detection_scores'] = tf.identity(scores, name='detection_scores')
  outputs['detection_classes'] = tf.identity(classes, name='detection_classes')
  outputs['num_detections'] = tf.identity(num_detections, name='num_detections')
192
  if masks is not None:
193
194
    outputs['detection_masks'] = tf.identity(masks, name='detection_masks')
  return outputs
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220


def _write_inference_graph(inference_graph_path,
                           checkpoint_path=None,
                           use_moving_averages=False,
                           output_node_names=(
                               'num_detections,detection_scores,'
                               'detection_boxes,detection_classes')):
  """Writes inference graph to disk with the option to bake in weights.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
    inference_graph_path: Path to write inference graph.
    checkpoint_path: Optional path to the checkpoint file.
    use_moving_averages: Whether to export the original or the moving averages
      of the trainable variables from the checkpoint.
    output_node_names: Output tensor names, defaults are: num_detections,
      detection_scores, detection_boxes, detection_classes.
  """
  inference_graph_def = tf.get_default_graph().as_graph_def()
  if checkpoint_path:
221
222
223
    output_graph_def = get_frozen_graph_def(
        inference_graph_def=inference_graph_def,
        use_moving_averages=use_moving_averages,
224
225
        input_checkpoint=checkpoint_path,
        output_node_names=output_node_names,
226
227
228
229
230
231
    )

    with gfile.GFile(inference_graph_path, 'wb') as f:
      f.write(output_graph_def.SerializeToString())
    logging.info('%d ops in the final graph.', len(output_graph_def.node))

232
233
234
235
236
237
238
    return
  tf.train.write_graph(inference_graph_def,
                       os.path.dirname(inference_graph_path),
                       os.path.basename(inference_graph_path),
                       as_text=False)


239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def _write_saved_model(inference_graph_path, inputs, outputs,
                       checkpoint_path=None, use_moving_averages=False):
  """Writes SavedModel to disk.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
    inference_graph_path: Path to write inference graph.
    inputs: The input image tensor to use for detection.
    outputs: A tensor dictionary containing the outputs of a DetectionModel.
    checkpoint_path: Optional path to the checkpoint file.
    use_moving_averages: Whether to export the original or the moving averages
      of the trainable variables from the checkpoint.
  """
  inference_graph_def = tf.get_default_graph().as_graph_def()
  checkpoint_graph_def = None
  if checkpoint_path:
    output_node_names = ','.join(outputs.keys())
    checkpoint_graph_def = get_frozen_graph_def(
        inference_graph_def=inference_graph_def,
        use_moving_averages=use_moving_averages,
        input_checkpoint=checkpoint_path,
        output_node_names=output_node_names
    )

  with tf.Graph().as_default():
    with session.Session() as sess:

      tf.import_graph_def(checkpoint_graph_def)

      builder = tf.saved_model.builder.SavedModelBuilder(inference_graph_path)

      tensor_info_inputs = {
          'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
      tensor_info_outputs = {}
      for k, v in outputs.items():
        tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)

      detection_signature = (
          tf.saved_model.signature_def_utils.build_signature_def(
              inputs=tensor_info_inputs,
              outputs=tensor_info_outputs,
              method_name=signature_constants.PREDICT_METHOD_NAME))

      builder.add_meta_graph_and_variables(
          sess, [tf.saved_model.tag_constants.SERVING],
          signature_def_map={
290
              signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
291
292
293
294
295
296
                  detection_signature,
          },
      )
      builder.save()


297
298
299
300
def _export_inference_graph(input_type,
                            detection_model,
                            use_moving_averages,
                            checkpoint_path,
301
302
                            inference_graph_path,
                            export_as_saved_model=False):
303
  """Export helper."""
304
305
306
307
308
309
  if input_type not in input_placeholder_fn_map:
    raise ValueError('Unknown input type: {}'.format(input_type))
  inputs = tf.to_float(input_placeholder_fn_map[input_type]())
  preprocessed_inputs = detection_model.preprocess(inputs)
  output_tensors = detection_model.predict(preprocessed_inputs)
  postprocessed_tensors = detection_model.postprocess(output_tensors)
310
311
312
313
314
315
316
317
318
  outputs = _add_output_tensor_nodes(postprocessed_tensors)
  out_node_names = list(outputs.keys())
  if export_as_saved_model:
    _write_saved_model(inference_graph_path, inputs, outputs, checkpoint_path,
                       use_moving_averages)
  else:
    _write_inference_graph(inference_graph_path, checkpoint_path,
                           use_moving_averages,
                           output_node_names=','.join(out_node_names))
319
320
321


def export_inference_graph(input_type, pipeline_config, checkpoint_path,
322
                           inference_graph_path, export_as_saved_model=False):
323
324
325
326
327
328
329
330
  """Exports inference graph for the model specified in the pipeline config.

  Args:
    input_type: Type of input for the graph. Can be one of [`image_tensor`,
      `tf_example`].
    pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
    checkpoint_path: Path to the checkpoint file to freeze.
    inference_graph_path: Path to write inference graph to.
331
332
    export_as_saved_model: If the model should be exported as a SavedModel. If
                           false, it is saved as an inference graph.
333
334
335
336
337
  """
  detection_model = model_builder.build(pipeline_config.model,
                                        is_training=False)
  _export_inference_graph(input_type, detection_model,
                          pipeline_config.eval_config.use_moving_averages,
338
339
                          checkpoint_path, inference_graph_path,
                          export_as_saved_model)