train_classifier.py 2.1 KB
Newer Older
1
# Copyright 2017 Google Inc. All Rights Reserved.
Ryan Sepassi's avatar
Ryan Sepassi committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains LSTM text classification model.

Model trains with adversarial or virtual adversarial training.

Computational time:
20
  1.8 hours to train 10000 steps without adversarial or virtual adversarial
Ryan Sepassi's avatar
Ryan Sepassi committed
21
    training, on 1 layer 1024 hidden units LSTM, 256 embeddings, 400 truncated
22
    BP, 64 minibatch and on single GPU (Pascal Titan X, cuDNNv5).
Ryan Sepassi's avatar
Ryan Sepassi committed
23

24
  4 hours to train 10000 steps with adversarial or virtual adversarial
Ryan Sepassi's avatar
Ryan Sepassi committed
25
26
27
28
29
30
31
32
33
    training, with above condition.

To initialize embedding and LSTM cell weights from a pretrained model, set
FLAGS.pretrained_model_dir to the pretrained model's checkpoint directory.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

34
35
# Dependency imports

Ryan Sepassi's avatar
Ryan Sepassi committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf

import graphs
import train_utils

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('pretrained_model_dir', None,
                    'Directory path to pretrained model to restore from')


def main(_):
  """Trains LSTM classification model."""
  tf.logging.set_verbosity(tf.logging.INFO)
  with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
    model = graphs.get_model()
    train_op, loss, global_step = model.classifier_training()
    train_utils.run_training(
        train_op,
        loss,
        global_step,
        variables_to_restore=model.pretrained_variables,
        pretrained_model_dir=FLAGS.pretrained_model_dir)


if __name__ == '__main__':
  tf.app.run()