evaluate.py 4.41 KB
Newer Older
1
# Copyright 2017 Google Inc. All Rights Reserved.
Ryan Sepassi's avatar
Ryan Sepassi committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluates text classification model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import time

24
25
# Dependency imports

Ryan Sepassi's avatar
Ryan Sepassi committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import tensorflow as tf

import graphs

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('master', '',
                    'BNS name prefix of the Tensorflow eval master, '
                    'or "local".')
flags.DEFINE_string('eval_dir', '/tmp/text_eval',
                    'Directory where to write event logs.')
flags.DEFINE_string('eval_data', 'test', 'Specify which dataset is used. '
                    '("train", "valid", "test") ')

flags.DEFINE_string('checkpoint_dir', '/tmp/text_train',
                    'Directory where to read model checkpoints.')
flags.DEFINE_integer('eval_interval_secs', 60, 'How often to run the eval.')
flags.DEFINE_integer('num_examples', 32, 'Number of examples to run.')
flags.DEFINE_bool('run_once', False, 'Whether to run eval only once.')


def restore_from_checkpoint(sess, saver):
  """Restore model from checkpoint.

  Args:
    sess: Session.
    saver: Saver for restoring the checkpoint.

  Returns:
    bool: Whether the checkpoint was found and restored
  """
  ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
  if not ckpt or not ckpt.model_checkpoint_path:
    tf.logging.info('No checkpoint found at %s', FLAGS.checkpoint_dir)
    return False

  saver.restore(sess, ckpt.model_checkpoint_path)
  return True


def run_eval(eval_ops, summary_writer, saver):
  """Runs evaluation over FLAGS.num_examples examples.

  Args:
    eval_ops: dict<metric name, tuple(value, update_op)>
    summary_writer: Summary writer.
    saver: Saver.

  Returns:
    dict<metric name, value>, with value being the average over all examples.
  """
  sv = tf.train.Supervisor(logdir=FLAGS.eval_dir, saver=None, summary_op=None)
  with sv.managed_session(
      master=FLAGS.master, start_standard_services=False) as sess:
    if not restore_from_checkpoint(sess, saver):
      return
    sv.start_queue_runners(sess)

    metric_names, ops = zip(*eval_ops.items())
    value_ops, update_ops = zip(*ops)

88
89
    value_ops_dict = dict(zip(metric_names, value_ops))

Ryan Sepassi's avatar
Ryan Sepassi committed
90
91
92
93
94
95
    # Run update ops
    num_batches = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
    tf.logging.info('Running %d batches for evaluation.', num_batches)
    for i in range(num_batches):
      if (i + 1) % 10 == 0:
        tf.logging.info('Running batch %d/%d...', i + 1, num_batches)
96
97
      if (i + 1) % 50 == 0:
        _log_values(sess, value_ops_dict)
Ryan Sepassi's avatar
Ryan Sepassi committed
98
99
      sess.run(update_ops)

100
101
    _log_values(sess, value_ops_dict, summary_writer=summary_writer)

Ryan Sepassi's avatar
Ryan Sepassi committed
102

103
def _log_values(sess, value_ops, summary_writer=None):
104
  """Evaluate, log, and write summaries of the eval metrics in value_ops."""
105
106
  metric_names, value_ops = zip(*value_ops.items())
  values = sess.run(value_ops)
Ryan Sepassi's avatar
Ryan Sepassi committed
107

108
109
110
111
112
113
114
  tf.logging.info('Eval metric values:')
  summary = tf.summary.Summary()
  for name, val in zip(metric_names, values):
    summary.value.add(tag=name, simple_value=val)
    tf.logging.info('%s = %.3f', name, val)

  if summary_writer is not None:
Ryan Sepassi's avatar
Ryan Sepassi committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    global_step_val = sess.run(tf.train.get_global_step())
    summary_writer.add_summary(summary, global_step_val)


def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.gfile.MakeDirs(FLAGS.eval_dir)
  tf.logging.info('Building eval graph...')
  output = graphs.get_model().eval_graph(FLAGS.eval_data)
  eval_ops, moving_averaged_variables = output

  saver = tf.train.Saver(moving_averaged_variables)
  summary_writer = tf.summary.FileWriter(
      FLAGS.eval_dir, graph=tf.get_default_graph())

  while True:
    run_eval(eval_ops, summary_writer, saver)
    if FLAGS.run_once:
      break
    time.sleep(FLAGS.eval_interval_secs)


if __name__ == '__main__':
  tf.app.run()