gen_vocab.py 3.18 KB
Newer Older
1
# Copyright 2017 Google Inc. All Rights Reserved.
Ryan Sepassi's avatar
Ryan Sepassi committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generates vocabulary and term frequency files for datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import defaultdict

22
23
# Dependency imports

Ryan Sepassi's avatar
Ryan Sepassi committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import tensorflow as tf

from adversarial_text.data import data_utils
from adversarial_text.data import document_generators

flags = tf.app.flags
FLAGS = flags.FLAGS

# Flags controlling input are in document_generators.py

flags.DEFINE_string('output_dir', '',
                    'Path to save vocab.txt and vocab_freq.txt.')

flags.DEFINE_boolean('use_unlabeled', True, 'Whether to use the '
                     'unlabeled sentiment dataset in the vocabulary.')
flags.DEFINE_boolean('include_validation', False, 'Whether to include the '
                     'validation set in the vocabulary.')
flags.DEFINE_integer('doc_count_threshold', 1, 'The minimum number of '
                     'documents a word or bigram should occur in to keep '
                     'it in the vocabulary.')

MAX_VOCAB_SIZE = 100 * 1000


def fill_vocab_from_doc(doc, vocab_freqs, doc_counts):
  """Fills vocabulary and doc counts with tokens from doc.

  Args:
    doc: Document to read tokens from.
    vocab_freqs: dict<token, frequency count>
    doc_counts: dict<token, document count>

  Returns:
    None
  """
  doc_seen = set()

  for token in document_generators.tokens(doc):
    if doc.add_tokens or token in vocab_freqs:
      vocab_freqs[token] += 1
    if token not in doc_seen:
      doc_counts[token] += 1
      doc_seen.add(token)


def main(_):
70
  tf.logging.set_verbosity(tf.logging.INFO)
Ryan Sepassi's avatar
Ryan Sepassi committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
  vocab_freqs = defaultdict(int)
  doc_counts = defaultdict(int)

  # Fill vocabulary frequencies map and document counts map
  for doc in document_generators.documents(
      dataset='train',
      include_unlabeled=FLAGS.use_unlabeled,
      include_validation=FLAGS.include_validation):
    fill_vocab_from_doc(doc, vocab_freqs, doc_counts)

  # Filter out low-occurring terms
  vocab_freqs = dict((term, freq) for term, freq in vocab_freqs.iteritems()
                     if doc_counts[term] > FLAGS.doc_count_threshold)

  # Sort by frequency
  ordered_vocab_freqs = data_utils.sort_vocab_by_frequency(vocab_freqs)

  # Limit vocab size
  ordered_vocab_freqs = ordered_vocab_freqs[:MAX_VOCAB_SIZE]

  # Add EOS token
  ordered_vocab_freqs.append((data_utils.EOS_TOKEN, 1))

  # Write
  tf.gfile.MakeDirs(FLAGS.output_dir)
  data_utils.write_vocab_and_frequency(ordered_vocab_freqs, FLAGS.output_dir)


if __name__ == '__main__':
  tf.app.run()