movinet_test.py 7.7 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Tests for movinet.py."""

from absl.testing import parameterized
import tensorflow as tf

Dan Kondratyuk's avatar
Dan Kondratyuk committed
21
from official.projects.movinet.modeling import movinet
Dan Kondratyuk's avatar
Dan Kondratyuk committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


class MoViNetTest(parameterized.TestCase, tf.test.TestCase):

  def test_network_creation(self):
    """Test creation of MoViNet family models."""
    tf.keras.backend.set_image_data_format('channels_last')

    network = movinet.Movinet(
        model_id='a0',
        causal=True,
    )
    inputs = tf.keras.Input(shape=(8, 128, 128, 3), batch_size=1)
    endpoints, states = network(inputs)

    self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
38
39
40
41
42
    self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
    self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
    self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
Dan Kondratyuk's avatar
Dan Kondratyuk committed
43
44
45
46
47
48
49
50
    self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])

    self.assertNotEmpty(states)

  def test_network_with_states(self):
    """Test creation of MoViNet family models with states."""
    tf.keras.backend.set_image_data_format('channels_last')

51
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
52
53
        model_id='a0',
        causal=True,
54
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
55
56
57
    )
    inputs = tf.ones([1, 8, 128, 128, 3])

58
59
    init_states = backbone.init_states(tf.shape(inputs))
    endpoints, new_states = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
60
61

    self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
62
63
64
65
66
    self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
    self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
    self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
Dan Kondratyuk's avatar
Dan Kondratyuk committed
67
68
    self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])

69
    self.assertNotEmpty(init_states)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
70
71
72
    self.assertNotEmpty(new_states)

  def test_movinet_stream(self):
73
    """Test if the backbone can be run in streaming mode."""
Dan Kondratyuk's avatar
Dan Kondratyuk committed
74
75
    tf.keras.backend.set_image_data_format('channels_last')

76
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
77
78
        model_id='a0',
        causal=True,
79
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
80
81
82
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

83
84
    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
85
86
87

    frames = tf.split(inputs, inputs.shape[1], axis=1)

88
    states = init_states
Dan Kondratyuk's avatar
Dan Kondratyuk committed
89
    for frame in frames:
90
      output, states = backbone({**states, 'image': frame})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
91
92
93
94
95
96
97
98
99
100
101
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  def test_movinet_stream_nse(self):
    """Test if the backbone can be run in streaming mode w/o SE layer."""
    tf.keras.backend.set_image_data_format('channels_last')

    backbone = movinet.Movinet(
        model_id='a0',
        causal=True,
        use_external_states=True,
        se_type='none',
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})

    frames = tf.split(inputs, inputs.shape[1], axis=1)

    states = init_states
    for frame in frames:
      output, states = backbone({**states, 'image': frame})
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

    # Check contents in the states dictionary.
    state_keys = list(init_states.keys())
    self.assertIn('state_head_pool_buffer', state_keys)
    self.assertIn('state_head_pool_frame_count', state_keys)
    state_keys.remove('state_head_pool_buffer')
    state_keys.remove('state_head_pool_frame_count')
    # From now on, there are only 'stream_buffer' for the convolutions.
    for state_key in state_keys:
      self.assertIn(
          'stream_buffer', state_key,
          msg=f'Expecting stream_buffer only, found {state_key}')

Dan Kondratyuk's avatar
Dan Kondratyuk committed
145
146
147
  def test_movinet_2plus1d_stream(self):
    tf.keras.backend.set_image_data_format('channels_last')

148
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
149
150
151
        model_id='a0',
        causal=True,
        conv_type='2plus1d',
152
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
153
154
155
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

156
157
    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
158
159
160

    frames = tf.split(inputs, inputs.shape[1], axis=1)

161
    states = init_states
Dan Kondratyuk's avatar
Dan Kondratyuk committed
162
    for frame in frames:
163
      output, states = backbone({**states, 'image': frame})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

  def test_movinet_3d_2plus1d_stream(self):
    tf.keras.backend.set_image_data_format('channels_last')

178
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
179
180
181
        model_id='a0',
        causal=True,
        conv_type='3d_2plus1d',
182
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
183
184
185
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

186
187
    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
188
189
190

    frames = tf.split(inputs, inputs.shape[1], axis=1)

191
    states = init_states
Dan Kondratyuk's avatar
Dan Kondratyuk committed
192
    for frame in frames:
193
      output, states = backbone({**states, 'image': frame})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    kwargs = dict(
        model_id='a0',
        causal=True,
        use_positional_encoding=True,
211
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    )
    network = movinet.Movinet(**kwargs)

    # Create another network object from the first object's config.
    new_network = movinet.Movinet.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())


if __name__ == '__main__':
  tf.test.main()