segmentation_losses.py 5.83 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Losses used for segmentation models."""

# Import libraries
import tensorflow as tf

from official.modeling import tf_utils

EPSILON = 1e-5


class SegmentationLoss:
  """Semantic segmentation loss."""

  def __init__(self, label_smoothing, class_weights, ignore_label,
               use_groundtruth_dimension, top_k_percent_pixels=1.0):
    self._top_k_percent_pixels = top_k_percent_pixels
    self._class_weights = class_weights
    self._ignore_label = ignore_label
    self._use_groundtruth_dimension = use_groundtruth_dimension
    self._label_smoothing = label_smoothing

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
  def __call__(self, logits, labels, **kwargs):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
38
39
40
41
    _, height, width, num_classes = logits.get_shape().as_list()

    if self._use_groundtruth_dimension:
      # TODO(arashwan): Test using align corners to match deeplab alignment.
      logits = tf.image.resize(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
          logits, tf.shape(labels)[1:3], method=tf.image.ResizeMethod.BILINEAR)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    else:
      labels = tf.image.resize(
          labels, (height, width),
          method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    valid_mask = tf.not_equal(labels, self._ignore_label)
    normalizer = tf.reduce_sum(tf.cast(valid_mask, tf.float32)) + EPSILON
    # Assign pixel with ignore label to class 0 (background). The loss on the
    # pixel will later be masked out.
    labels = tf.where(valid_mask, labels, tf.zeros_like(labels))

    labels = tf.squeeze(tf.cast(labels, tf.int32), axis=3)
    valid_mask = tf.squeeze(tf.cast(valid_mask, tf.float32), axis=3)
    cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
58
        labels=self.get_labels_with_prob(labels, logits, **kwargs),
        logits=logits)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    if not self._class_weights:
      class_weights = [1] * num_classes
    else:
      class_weights = self._class_weights

    if num_classes != len(class_weights):
      raise ValueError(
          'Length of class_weights should be {}'.format(num_classes))

    weight_mask = tf.einsum('...y,y->...',
                            tf.one_hot(labels, num_classes, dtype=tf.float32),
                            tf.constant(class_weights, tf.float32))
    valid_mask *= weight_mask
    cross_entropy_loss *= tf.cast(valid_mask, tf.float32)

    if self._top_k_percent_pixels >= 1.0:
      loss = tf.reduce_sum(cross_entropy_loss) / normalizer
    else:
      cross_entropy_loss = tf.reshape(cross_entropy_loss, shape=[-1])
      top_k_pixels = tf.cast(
          self._top_k_percent_pixels *
          tf.cast(tf.size(cross_entropy_loss), tf.float32), tf.int32)
      top_k_losses, _ = tf.math.top_k(
          cross_entropy_loss, k=top_k_pixels, sorted=True)
      normalizer = tf.reduce_sum(
          tf.cast(tf.not_equal(top_k_losses, 0.0), tf.float32)) + EPSILON
      loss = tf.reduce_sum(top_k_losses) / normalizer

    return loss

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  def get_labels_with_prob(self, labels, logits, **unused_kwargs):
    """Get a tensor representing the probability of each class for each pixel.

    This method can be overridden in subclasses for customizing loss function.

    Args:
      labels: A float tensor in shape (batch_size, height, width), which is the
        label map of the ground truth.
      logits: A float tensor in shape (batch_size, height, width, num_classes)
        which is the output of the network.
      **unused_kwargs: Unused keyword arguments.

    Returns:
       A float tensor in shape (batch_size, height, width, num_classes).
    """
    num_classes = logits.get_shape().as_list()[-1]
    onehot_labels = tf.one_hot(labels, num_classes)
    return onehot_labels * (
        1 - self._label_smoothing) + self._label_smoothing / num_classes

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111
112
113
114
115
116

def get_actual_mask_scores(logits, labels, ignore_label):
  """Gets actual mask scores."""
  _, height, width, num_classes = logits.get_shape().as_list()
  batch_size = tf.shape(logits)[0]
  logits = tf.stop_gradient(logits)
  labels = tf.image.resize(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
      labels, (height, width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  predicted_labels = tf.argmax(logits, -1, output_type=tf.int32)
  flat_predictions = tf.reshape(predicted_labels, [batch_size, -1])
  flat_labels = tf.cast(tf.reshape(labels, [batch_size, -1]), tf.int32)

  one_hot_predictions = tf.one_hot(
      flat_predictions, num_classes, on_value=True, off_value=False)
  one_hot_labels = tf.one_hot(
      flat_labels, num_classes, on_value=True, off_value=False)
  keep_mask = tf.not_equal(flat_labels, ignore_label)
  keep_mask = tf.expand_dims(keep_mask, 2)

  overlap = tf.logical_and(one_hot_predictions, one_hot_labels)
  overlap = tf.logical_and(overlap, keep_mask)
  overlap = tf.reduce_sum(tf.cast(overlap, tf.float32), axis=1)
  union = tf.logical_or(one_hot_predictions, one_hot_labels)
  union = tf.logical_and(union, keep_mask)
  union = tf.reduce_sum(tf.cast(union, tf.float32), axis=1)
  actual_scores = tf.divide(overlap, tf.maximum(union, EPSILON))
  return actual_scores


class MaskScoringLoss:
  """Mask Scoring loss."""

  def __init__(self, ignore_label):
    self._ignore_label = ignore_label
    self._mse_loss = tf.keras.losses.MeanSquaredError(
        reduction=tf.keras.losses.Reduction.NONE)

  def __call__(self, predicted_scores, logits, labels):
    actual_scores = get_actual_mask_scores(logits, labels, self._ignore_label)
    loss = tf_utils.safe_mean(self._mse_loss(actual_scores, predicted_scores))
    return loss