semantic_segmentation.py 27.2 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Semantic segmentation configuration definition."""
import dataclasses
import os
from typing import List, Optional, Union

import numpy as np
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.configs import common
from official.vision.configs import decoders
from official.vision.configs import backbones


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  output_size: List[int] = dataclasses.field(default_factory=list)
  # If crop_size is specified, image will be resized first to
  # output_size, then crop of size crop_size will be cropped.
  crop_size: List[int] = dataclasses.field(default_factory=list)
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 1000
  cycle_length: int = 10
  # If resize_eval_groundtruth is set to False, original image sizes are used
  # for eval. In that case, groundtruth_padded_size has to be specified too to
  # allow for batching the variable input sizes of images.
  resize_eval_groundtruth: bool = True
  groundtruth_padded_size: List[int] = dataclasses.field(default_factory=list)
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  aug_rand_hflip: bool = True
  preserve_aspect_ratio: bool = True
  aug_policy: Optional[str] = None
  drop_remainder: bool = True
  file_type: str = 'tfrecord'
  decoder: Optional[common.DataDecoder] = common.DataDecoder()


@dataclasses.dataclass
class SegmentationHead(hyperparams.Config):
  """Segmentation head config."""
  level: int = 3
  num_convs: int = 2
  num_filters: int = 256
  use_depthwise_convolution: bool = False
  prediction_kernel_size: int = 1
  upsample_factor: int = 1
  feature_fusion: Optional[
      str] = None  # None, deeplabv3plus, panoptic_fpn_fusion or pyramid_fusion
  # deeplabv3plus feature fusion params
  low_level: Union[int, str] = 2
  low_level_num_filters: int = 48
  # panoptic_fpn_fusion params
  decoder_min_level: Optional[Union[int, str]] = None
  decoder_max_level: Optional[Union[int, str]] = None


@dataclasses.dataclass
class MaskScoringHead(hyperparams.Config):
  """Mask Scoring head config."""
  num_convs: int = 4
  num_filters: int = 128
  fc_input_size: List[int] = dataclasses.field(default_factory=list)
  num_fcs: int = 2
  fc_dims: int = 1024


@dataclasses.dataclass
class SemanticSegmentationModel(hyperparams.Config):
  """Semantic segmentation model config."""
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 6
  head: SegmentationHead = SegmentationHead()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(type='identity')
  mask_scoring_head: Optional[MaskScoringHead] = None
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class Losses(hyperparams.Config):
  loss_weight: float = 1.0
  label_smoothing: float = 0.0
  ignore_label: int = 255
  class_weights: List[float] = dataclasses.field(default_factory=list)
  l2_weight_decay: float = 0.0
  use_groundtruth_dimension: bool = True
  top_k_percent_pixels: float = 1.0


@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  report_per_class_iou: bool = True
  report_train_mean_iou: bool = True  # Turning this off can speed up training.


119
120
121
122
123
124
@dataclasses.dataclass
class ExportConfig(hyperparams.Config):
  # Whether to rescale the predicted mask to the original image size.
  rescale_output: bool = False


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
@dataclasses.dataclass
class SemanticSegmentationTask(cfg.TaskConfig):
  """The model config."""
  model: SemanticSegmentationModel = SemanticSegmentationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  evaluation: Evaluation = Evaluation()
  train_input_partition_dims: List[int] = dataclasses.field(
      default_factory=list)
  eval_input_partition_dims: List[int] = dataclasses.field(
      default_factory=list)
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone, and/or decoder
140
  export_config: ExportConfig = ExportConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719


@exp_factory.register_config_factory('semantic_segmentation')
def semantic_segmentation() -> cfg.ExperimentConfig:
  """Semantic segmentation general."""
  return cfg.ExperimentConfig(
      task=SemanticSegmentationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

# PASCAL VOC 2012 Dataset
PASCAL_TRAIN_EXAMPLES = 10582
PASCAL_VAL_EXAMPLES = 1449
PASCAL_INPUT_PATH_BASE = 'gs://**/pascal_voc_seg'


@exp_factory.register_config_factory('seg_deeplabv3_pascal')
def seg_deeplabv3_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on pascal voc with resnet deeplabv3."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = [12, 24, 36]  # [6, 12, 18] if output_stride = 16
  multigrid = [1, 2, 4]
  stem_type = 'v1'
  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
              input_size=[None, None, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
                      model_id=101, output_stride=output_stride,
                      multigrid=multigrid, stem_type=stem_type)),
              decoder=decoders.Decoder(
                  type='aspp', aspp=decoders.ASPP(
                      level=level, dilation_rates=aspp_dilation_rates)),
              head=SegmentationHead(level=level, num_convs=0),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              # TODO(arashwan): test changing size to 513 to match deeplab.
              output_size=[512, 512],
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              output_size=[512, 512],
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
          # resnet101
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('seg_deeplabv3plus_pascal')
def seg_deeplabv3plus_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on pascal voc with resnet deeplabv3+."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = [6, 12, 18]
  multigrid = [1, 2, 4]
  stem_type = 'v1'
  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
              input_size=[None, None, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
                      model_id=101, output_stride=output_stride,
                      stem_type=stem_type, multigrid=multigrid)),
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
                      level=level, dilation_rates=aspp_dilation_rates)),
              head=SegmentationHead(
                  level=level,
                  num_convs=2,
                  feature_fusion='deeplabv3plus',
                  low_level=2,
                  low_level_num_filters=48),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              output_size=[512, 512],
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              output_size=[512, 512],
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
          # resnet101
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('seg_resnetfpn_pascal')
def seg_resnetfpn_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on pascal voc with resnet-fpn."""
  train_batch_size = 256
  eval_batch_size = 32
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
              input_size=[512, 512, 3],
              min_level=3,
              max_level=7,
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
              decoder=decoders.Decoder(type='fpn', fpn=decoders.FPN()),
              head=SegmentationHead(level=3, num_convs=3),
              norm_activation=common.NormActivation(
                  activation='swish',
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.2,
              aug_scale_max=1.5),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
      ),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=450 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 450 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('mnv2_deeplabv3_pascal')
def mnv2_deeplabv3_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on pascal with mobilenetv2 deeplabv3."""
  train_batch_size = 16
  eval_batch_size = 16
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = []
  level = int(np.math.log2(output_stride))
  pool_kernel_size = []

  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
              input_size=[None, None, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
                      model_id='MobileNetV2', output_stride=output_stride)),
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
                      level=level,
                      dilation_rates=aspp_dilation_rates,
                      pool_kernel_size=pool_kernel_size)),
              head=SegmentationHead(level=level, num_convs=0),
              norm_activation=common.NormActivation(
                  activation='relu',
                  norm_momentum=0.99,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=4e-5),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              output_size=[512, 512],
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              output_size=[512, 512],
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
          # mobilenetv2
          init_checkpoint='gs://tf_model_garden/cloud/vision-2.0/deeplab/deeplabv3_mobilenetv2_coco/best_ckpt-63',
          init_checkpoint_modules=['backbone', 'decoder']),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=30000,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          best_checkpoint_eval_metric='mean_iou',
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_metric_comp='higher',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007 * train_batch_size / 16,
                      'decay_steps': 30000,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


# Cityscapes Dataset (Download and process the dataset yourself)
CITYSCAPES_TRAIN_EXAMPLES = 2975
CITYSCAPES_VAL_EXAMPLES = 500
CITYSCAPES_INPUT_PATH_BASE = 'cityscapes'


@exp_factory.register_config_factory('seg_deeplabv3plus_cityscapes')
def seg_deeplabv3plus_cityscapes() -> cfg.ExperimentConfig:
  """Image segmentation on cityscapes with resnet deeplabv3+."""
  train_batch_size = 16
  eval_batch_size = 16
  steps_per_epoch = CITYSCAPES_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = [6, 12, 18]
  multigrid = [1, 2, 4]
  stem_type = 'v1'
  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              # Cityscapes uses only 19 semantic classes for train/evaluation.
              # The void (background) class is ignored in train and evaluation.
              num_classes=19,
              input_size=[None, None, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
                      model_id=101, output_stride=output_stride,
                      stem_type=stem_type, multigrid=multigrid)),
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
                      level=level, dilation_rates=aspp_dilation_rates,
                      pool_kernel_size=[512, 1024])),
              head=SegmentationHead(
                  level=level,
                  num_convs=2,
                  feature_fusion='deeplabv3plus',
                  low_level=2,
                  low_level_num_filters=48),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.99,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE,
                                      'train_fine**'),
              crop_size=[512, 1024],
              output_size=[1024, 2048],
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE, 'val_fine*'),
              output_size=[1024, 2048],
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=True,
              drop_remainder=False),
          # resnet101
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=500 * steps_per_epoch,
          validation_steps=CITYSCAPES_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.01,
                      'decay_steps': 500 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('mnv2_deeplabv3_cityscapes')
def mnv2_deeplabv3_cityscapes() -> cfg.ExperimentConfig:
  """Image segmentation on cityscapes with mobilenetv2 deeplabv3."""
  train_batch_size = 16
  eval_batch_size = 16
  steps_per_epoch = CITYSCAPES_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = []
  pool_kernel_size = [512, 1024]

  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              # Cityscapes uses only 19 semantic classes for train/evaluation.
              # The void (background) class is ignored in train and evaluation.
              num_classes=19,
              input_size=[None, None, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
                      model_id='MobileNetV2', output_stride=output_stride)),
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
                      level=level,
                      dilation_rates=aspp_dilation_rates,
                      pool_kernel_size=pool_kernel_size)),
              head=SegmentationHead(level=level, num_convs=0),
              norm_activation=common.NormActivation(
                  activation='relu',
                  norm_momentum=0.99,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=4e-5),
          train_data=DataConfig(
              input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE,
                                      'train_fine**'),
              crop_size=[512, 1024],
              output_size=[1024, 2048],
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE, 'val_fine*'),
              output_size=[1024, 2048],
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=True,
              drop_remainder=False),
          # Coco pre-trained mobilenetv2 checkpoint
          init_checkpoint='gs://tf_model_garden/cloud/vision-2.0/deeplab/deeplabv3_mobilenetv2_coco/best_ckpt-63',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=100000,
          validation_steps=CITYSCAPES_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          best_checkpoint_eval_metric='mean_iou',
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_metric_comp='higher',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.01,
                      'decay_steps': 100000,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('mnv2_deeplabv3plus_cityscapes')
def mnv2_deeplabv3plus_cityscapes() -> cfg.ExperimentConfig:
  """Image segmentation on cityscapes with mobilenetv2 deeplabv3plus."""
  config = mnv2_deeplabv3_cityscapes()
  config.task.model.head = SegmentationHead(
      level=4,
      num_convs=2,
      feature_fusion='deeplabv3plus',
      use_depthwise_convolution=True,
      low_level='2/depthwise',
      low_level_num_filters=48)
  config.task.model.backbone.mobilenet.output_intermediate_endpoints = True
  return config