"benchmarks/benchmark_latency.py" did not exist on "27f1410d065ceca53a07abd2518082eb25228e4f"
lexicon.py 2.76 KB
Newer Older
Ivan Bogatyy's avatar
Ivan Bogatyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""SyntaxNet lexicon utils."""

import os.path


import tensorflow as tf

from syntaxnet import task_spec_pb2
from syntaxnet.ops import gen_parser_ops


def create_lexicon_context(path):
  """Construct a SyntaxNet TaskContext file for standard lexical resources."""
  context = task_spec_pb2.TaskSpec()
  for name in [
      'word-map', 'tag-map', 'tag-to-category', 'lcword-map', 'category-map',
31
32
      'char-map', 'char-ngram-map', 'label-map', 'prefix-table', 'suffix-table',
      'known-word-map'
Ivan Bogatyy's avatar
Ivan Bogatyy committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  ]:
    context.input.add(name=name).part.add(file_pattern=os.path.join(path, name))
  return context


def build_lexicon(output_path,
                  training_corpus_path,
                  tf_master='',
                  training_corpus_format='conll-sentence',
                  morph_to_pos=False,
                  **kwargs):
  """Constructs a SyntaxNet lexicon at the given path.

  Args:
    output_path: Location to construct the lexicon.
    training_corpus_path: Path to CONLL formatted training data.
    tf_master: TensorFlow master executor (string, defaults to '' to use the
      local instance).
    training_corpus_format: Format of the training corpus (defaults to CONLL;
      search for REGISTER_SYNTAXNET_DOCUMENT_FORMAT for other formats).
    morph_to_pos: Whether to serialize morph attributes to the tag field,
      combined with category and fine POS tag.
    **kwargs: Forwarded to the LexiconBuilder op.
  """
  context = create_lexicon_context(output_path)
  if morph_to_pos:
    context.parameter.add(name='join_category_to_pos', value='true')
    context.parameter.add(name='add_pos_as_attribute', value='true')
    context.parameter.add(name='serialize_morph_to_pos', value='true')

  # Add the training data to the context.
  resource = context.input.add()
  resource.name = 'corpus'
  resource.record_format.extend([training_corpus_format])
  part = resource.part.add()
  part.file_pattern = training_corpus_path

  # Run the lexicon builder op.
  with tf.Session(tf_master) as sess:
    sess.run(
        gen_parser_ops.lexicon_builder(
            task_context_str=str(context), corpus_name='corpus', **kwargs))