simclr.py 23.8 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Image SimCLR task definition.

SimCLR training two different modes:
- pretrain
- fine-tuning

For the above two different modes, the following components are different in
the task definition:
- training data format
- training loss
- projection_head and/or supervised_head
"""
from typing import Dict, Optional

from absl import logging
import tensorflow as tf

from official.core import base_task
from official.core import config_definitions
from official.core import input_reader
from official.core import task_factory
from official.modeling import optimization
from official.modeling import performance
from official.modeling import tf_utils
Abdullah Rashwan's avatar
Abdullah Rashwan committed
39
40
41
42
43
from official.projects.simclr.configs import simclr as exp_cfg
from official.projects.simclr.dataloaders import simclr_input
from official.projects.simclr.heads import simclr_head
from official.projects.simclr.losses import contrastive_losses
from official.projects.simclr.modeling import simclr_model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
from official.vision.modeling import backbones
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
47
48
49
50
51
52
53

OptimizationConfig = optimization.OptimizationConfig
RuntimeConfig = config_definitions.RuntimeConfig


@task_factory.register_task_cls(exp_cfg.SimCLRPretrainTask)
class SimCLRPretrainTask(base_task.Task):
  """A task for image classification."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
  def create_optimizer(self,
                       optimizer_config: OptimizationConfig,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
58
59
60
61
62
63
64
65
                       runtime_config: Optional[RuntimeConfig] = None):
    """Creates an TF optimizer from configurations.

    Args:
      optimizer_config: the parameters of the Optimization settings.
      runtime_config: the parameters of the runtime.

    Returns:
      A tf.optimizers.Optimizer object.
    """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
    if (optimizer_config.optimizer.type == 'lars' and
        self.task_config.loss.l2_weight_decay > 0.0):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
69
70
71
72
73
74
75
76
77
78
      raise ValueError('The l2_weight_decay cannot be used together with lars '
                       'optimizer. Please set it to 0.')

    opt_factory = optimization.OptimizerFactory(optimizer_config)
    optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate())
    # Configuring optimizer when loss_scale is set in runtime config. This helps
    # avoiding overflow/underflow for float16 computations.
    if runtime_config and runtime_config.loss_scale:
      optimizer = performance.configure_optimizer(
          optimizer,
          use_float16=runtime_config.mixed_precision_dtype == 'float16',
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
79
          loss_scale=runtime_config.loss_scale)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
81
82
83
84

    return optimizer

  def build_model(self):
    model_config = self.task_config.model
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
86
    input_specs = tf.keras.layers.InputSpec(shape=[None] +
                                            model_config.input_size)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
88
89
90
91

    l2_weight_decay = self.task_config.loss.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
94
    l2_regularizer = (
        tf.keras.regularizers.l2(l2_weight_decay /
                                 2.0) if l2_weight_decay else None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
96
97
98

    # Build backbone
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
        backbone_config=model_config.backbone,
        norm_activation_config=model_config.norm_activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        l2_regularizer=l2_regularizer)

    # Build projection head
    norm_activation_config = model_config.norm_activation
    projection_head_config = model_config.projection_head
    projection_head = simclr_head.ProjectionHead(
        proj_output_dim=projection_head_config.proj_output_dim,
        num_proj_layers=projection_head_config.num_proj_layers,
        ft_proj_idx=projection_head_config.ft_proj_idx,
        kernel_regularizer=l2_regularizer,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon)

    # Build supervised head
    supervised_head_config = model_config.supervised_head
    if supervised_head_config:
      if supervised_head_config.zero_init:
        s_kernel_initializer = 'zeros'
      else:
        s_kernel_initializer = 'random_uniform'
      supervised_head = simclr_head.ClassificationHead(
          num_classes=supervised_head_config.num_classes,
          kernel_initializer=s_kernel_initializer,
          kernel_regularizer=l2_regularizer)
    else:
      supervised_head = None

    model = simclr_model.SimCLRModel(
        input_specs=input_specs,
        backbone=backbone,
        projection_head=projection_head,
        supervised_head=supervised_head,
        mode=model_config.mode,
        backbone_trainable=model_config.backbone_trainable)

    logging.info(model.get_config())

    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
154
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
156
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
157
      status = ckpt.read(ckpt_dir_or_file)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
158
159
      status.expect_partial().assert_existing_objects_matched()
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self, params, input_context=None):
    input_size = self.task_config.model.input_size

    if params.tfds_name:
      decoder = simclr_input.TFDSDecoder(params.decoder.decode_label)
    else:
      decoder = simclr_input.Decoder(params.decoder.decode_label)

    parser = simclr_input.Parser(
        output_size=input_size[:2],
        aug_rand_crop=params.parser.aug_rand_crop,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_color_distort=params.parser.aug_color_distort,
        aug_color_jitter_strength=params.parser.aug_color_jitter_strength,
        aug_color_jitter_impl=params.parser.aug_color_jitter_impl,
        aug_rand_blur=params.parser.aug_rand_blur,
        parse_label=params.parser.parse_label,
        test_crop=params.parser.test_crop,
        mode=params.parser.mode,
        dtype=params.dtype)

    reader = input_reader.InputReader(
        params,
        dataset_fn=tf.data.TFRecordDataset,
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self,
                   labels,
                   model_outputs,
                   aux_losses=None) -> Dict[str, tf.Tensor]:
    # Compute contrastive relative loss
    con_losses_obj = contrastive_losses.ContrastiveLoss(
        projection_norm=self.task_config.loss.projection_norm,
        temperature=self.task_config.loss.temperature)
    # The projection outputs from model has the size of
    # (2 * bsz, project_dim)
    projection_outputs = model_outputs[simclr_model.PROJECTION_OUTPUT_KEY]
    projection1, projection2 = tf.split(projection_outputs, 2, 0)
    contrast_loss, (contrast_logits, contrast_labels) = con_losses_obj(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
        projection1=projection1, projection2=projection2)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    contrast_accuracy = tf.equal(
        tf.argmax(contrast_labels, axis=1), tf.argmax(contrast_logits, axis=1))
    contrast_accuracy = tf.reduce_mean(tf.cast(contrast_accuracy, tf.float32))

    contrast_prob = tf.nn.softmax(contrast_logits)
    contrast_entropy = -tf.reduce_mean(
        tf.reduce_sum(contrast_prob * tf.math.log(contrast_prob + 1e-8), -1))

    model_loss = contrast_loss

    losses = {
        'contrast_loss': contrast_loss,
        'contrast_accuracy': contrast_accuracy,
        'contrast_entropy': contrast_entropy
    }

    if self.task_config.model.supervised_head is not None:
      outputs = model_outputs[simclr_model.SUPERVISED_OUTPUT_KEY]
      labels = tf.concat([labels, labels], 0)

      if self.task_config.evaluation.one_hot:
        sup_loss = tf.keras.losses.CategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE)(labels,
                                                                        outputs)
      else:
        sup_loss = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE)(labels,
                                                                        outputs)
      sup_loss = tf.reduce_mean(sup_loss)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
243
      label_acc = tf.equal(
          tf.argmax(labels, axis=1), tf.argmax(outputs, axis=1))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
      label_acc = tf.reduce_mean(tf.cast(label_acc, tf.float32))

      model_loss = contrast_loss + sup_loss

      losses.update({
          'accuracy': label_acc,
          'supervised_loss': sup_loss,
      })

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

    losses['total_loss'] = total_loss

    return losses

  def build_metrics(self, training=True):

    if training:
      metrics = []
      metric_names = [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
          'total_loss', 'contrast_loss', 'contrast_accuracy', 'contrast_entropy'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
268
269
270
271
272
273
274
275
276
277
278
      ]
      if self.task_config.model.supervised_head:
        metric_names.extend(['supervised_loss', 'accuracy'])
      for name in metric_names:
        metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))
    else:
      k = self.task_config.evaluation.top_k
      if self.task_config.evaluation.one_hot:
        metrics = [
            tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.TopKCategoricalAccuracy(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
279
280
                k=k, name='top_{}_accuracy'.format(k))
        ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
281
282
283
284
      else:
        metrics = [
            tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.SparseTopKCategoricalAccuracy(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
285
286
                k=k, name='top_{}_accuracy'.format(k))
        ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
287
288
289
290
    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    features, labels = inputs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
291
292
293
294
295
296

    # To do a sanity check that we absolutely use no labels when pretraining, we
    # can set the labels here to zero.
    if self.task_config.train_data.input_set_label_to_zero:
      labels *= 0

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
297
298
    if (self.task_config.model.supervised_head is not None and
        self.task_config.evaluation.one_hot):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299
300
301
302
303
304
305
306
      num_classes = self.task_config.model.supervised_head.num_classes
      labels = tf.one_hot(labels, num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
307
      outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

      # Computes per-replica loss.
      losses = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)

      scaled_loss = losses['total_loss'] / num_replicas
      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    logging.info('Trainable variables:')
    for var in tvars:
      logging.info(var.name)
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: losses['total_loss']}

    for m in metrics:
      m.update_state(losses[m.name])
      logs.update({m.name: m.result()})

    return logs

  def validation_step(self, inputs, model, metrics=None):
    if self.task_config.model.supervised_head is None:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
339
340
      raise ValueError(
          'Skipping eval during pretraining without supervised head.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

    features, labels = inputs
    if self.task_config.evaluation.one_hot:
      num_classes = self.task_config.model.supervised_head.num_classes
      labels = tf.one_hot(labels, num_classes)

    outputs = model(
        features, training=False)[simclr_model.SUPERVISED_OUTPUT_KEY]
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)

    logs = {self.loss: 0}

    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})

    return logs


@task_factory.register_task_cls(exp_cfg.SimCLRFinetuneTask)
class SimCLRFinetuneTask(base_task.Task):
  """A task for image classification."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
367
368
  def create_optimizer(self,
                       optimizer_config: OptimizationConfig,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
369
370
371
372
373
374
375
376
377
378
                       runtime_config: Optional[RuntimeConfig] = None):
    """Creates an TF optimizer from configurations.

    Args:
      optimizer_config: the parameters of the Optimization settings.
      runtime_config: the parameters of the runtime.

    Returns:
      A tf.optimizers.Optimizer object.
    """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
379
380
    if (optimizer_config.optimizer.type == 'lars' and
        self.task_config.loss.l2_weight_decay > 0.0):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
382
383
384
385
386
387
388
389
390
391
      raise ValueError('The l2_weight_decay cannot be used together with lars '
                       'optimizer. Please set it to 0.')

    opt_factory = optimization.OptimizerFactory(optimizer_config)
    optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate())
    # Configuring optimizer when loss_scale is set in runtime config. This helps
    # avoiding overflow/underflow for float16 computations.
    if runtime_config and runtime_config.loss_scale:
      optimizer = performance.configure_optimizer(
          optimizer,
          use_float16=runtime_config.mixed_precision_dtype == 'float16',
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
392
          loss_scale=runtime_config.loss_scale)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
393
394
395
396
397

    return optimizer

  def build_model(self):
    model_config = self.task_config.model
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
398
399
    input_specs = tf.keras.layers.InputSpec(shape=[None] +
                                            model_config.input_size)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
400
401
402
403
404

    l2_weight_decay = self.task_config.loss.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
405
406
407
    l2_regularizer = (
        tf.keras.regularizers.l2(l2_weight_decay /
                                 2.0) if l2_weight_decay else None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
408
409
410

    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
411
412
        backbone_config=model_config.backbone,
        norm_activation_config=model_config.norm_activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        l2_regularizer=l2_regularizer)

    norm_activation_config = model_config.norm_activation
    projection_head_config = model_config.projection_head
    projection_head = simclr_head.ProjectionHead(
        proj_output_dim=projection_head_config.proj_output_dim,
        num_proj_layers=projection_head_config.num_proj_layers,
        ft_proj_idx=projection_head_config.ft_proj_idx,
        kernel_regularizer=l2_regularizer,
        use_sync_bn=norm_activation_config.use_sync_bn,
        norm_momentum=norm_activation_config.norm_momentum,
        norm_epsilon=norm_activation_config.norm_epsilon)

    supervised_head_config = model_config.supervised_head
    if supervised_head_config.zero_init:
      s_kernel_initializer = 'zeros'
    else:
      s_kernel_initializer = 'random_uniform'
    supervised_head = simclr_head.ClassificationHead(
        num_classes=supervised_head_config.num_classes,
        kernel_initializer=s_kernel_initializer,
        kernel_regularizer=l2_regularizer)

    model = simclr_model.SimCLRModel(
        input_specs=input_specs,
        backbone=backbone,
        projection_head=projection_head,
        supervised_head=supervised_head,
        mode=model_config.mode,
        backbone_trainable=model_config.backbone_trainable)

    logging.info(model.get_config())

    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
460
461
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
462
    elif self.task_config.init_checkpoint_modules == 'backbone_projection':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
463
464
      ckpt = tf.train.Checkpoint(
          backbone=model.backbone, projection_head=model.projection_head)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
465
      status = ckpt.read(ckpt_dir_or_file)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
466
467
468
      status.expect_partial().assert_existing_objects_matched()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
469
      status = ckpt.read(ckpt_dir_or_file)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
470
471
      status.expect_partial().assert_existing_objects_matched()
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
472
473
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

    # If the checkpoint is from pretraining, reset the following parameters
    model.backbone_trainable = self.task_config.model.backbone_trainable
    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self, params, input_context=None):
    input_size = self.task_config.model.input_size

    if params.tfds_name:
      decoder = simclr_input.TFDSDecoder(params.decoder.decode_label)
    else:
      decoder = simclr_input.Decoder(params.decoder.decode_label)
    parser = simclr_input.Parser(
        output_size=input_size[:2],
        parse_label=params.parser.parse_label,
        test_crop=params.parser.test_crop,
        mode=params.parser.mode,
        dtype=params.dtype)

    reader = input_reader.InputReader(
        params,
        dataset_fn=tf.data.TFRecordDataset,
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, labels, model_outputs, aux_losses=None):
    """Sparse categorical cross entropy loss.

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
    losses_config = self.task_config.loss
    if losses_config.one_hot:
      total_loss = tf.keras.losses.categorical_crossentropy(
          labels,
          model_outputs,
          from_logits=True,
          label_smoothing=losses_config.label_smoothing)
    else:
      total_loss = tf.keras.losses.sparse_categorical_crossentropy(
          labels, model_outputs, from_logits=True)

    total_loss = tf_utils.safe_mean(total_loss)
    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

  def build_metrics(self, training=True):
    """Gets streaming metrics for training/validation."""
    k = self.task_config.evaluation.top_k
    if self.task_config.evaluation.one_hot:
      metrics = [
          tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.TopKCategoricalAccuracy(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
539
540
              k=k, name='top_{}_accuracy'.format(k))
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
541
542
543
544
    else:
      metrics = [
          tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.SparseTopKCategoricalAccuracy(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
545
546
              k=k, name='top_{}_accuracy'.format(k))
      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    if self.task_config.loss.one_hot:
      num_classes = self.task_config.model.supervised_head.num_classes
      labels = tf.one_hot(labels, num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(
          features, training=True)[simclr_model.SUPERVISED_OUTPUT_KEY]
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
576
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
577
578
579
580
581
582
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
583
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
584
585
586
587
588
589
590
591
592
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    logging.info('Trainable variables:')
    for var in tvars:
      logging.info(var.name)
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
593
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    if self.task_config.loss.one_hot:
      num_classes = self.task_config.model.supervised_head.num_classes
      labels = tf.one_hot(labels, num_classes)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
622
623
    outputs = self.inference_step(features,
                                  model)[simclr_model.SUPERVISED_OUTPUT_KEY]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
624
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
625
626
    loss = self.build_losses(
        model_outputs=outputs, labels=labels, aux_losses=model.losses)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
627
628
629
630
631
632
633
634
635

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs