multitask_train.py 2.69 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Trainer binary for multitask simclr."""
from absl import app
from absl import flags
import gin

from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import train_utils
from official.modeling import performance
from official.modeling.multitask import multitask
from official.modeling.multitask import train_lib

# pylint: disable=unused-import
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30
from official.projects.simclr.common import registry_imports
from official.projects.simclr.configs import multitask_config
from official.projects.simclr.modeling import multitask_model
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# pylint: enable=unused-import

FLAGS = flags.FLAGS


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)

  with distribution_strategy.scope():
    tasks = multitask.MultiTask.from_config(params.task)
    model = multitask_model.SimCLRMTModel(params.task.model)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=tasks,
      model=model,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

  train_utils.save_gin_config(FLAGS.mode, model_dir)


if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)