simclr_test.py 1.79 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
"""Tests for SimCLR config."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
18
19
20
21
from absl.testing import parameterized

import tensorflow as tf

from official.core import config_definitions as cfg
from official.core import exp_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
from official.projects.simclr.common import registry_imports  # pylint: disable=unused-import
from official.projects.simclr.configs import simclr as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


class SimCLRConfigTest(tf.test.TestCase, parameterized.TestCase):

  @parameterized.parameters(
      'simclr_pretraining_imagenet', 'simclr_finetuning_imagenet')
  def test_simclr_configs(self, config_name):
    config = exp_factory.get_exp_config(config_name)
    self.assertIsInstance(config, cfg.ExperimentConfig)
    if config_name == 'simclr_pretrain_imagenet':
      self.assertIsInstance(config.task, exp_cfg.SimCLRPretrainTask)
    elif config_name == 'simclr_finetuning_imagenet':
      self.assertIsInstance(config.task, exp_cfg.SimCLRFinetuneTask)
    self.assertIsInstance(config.task.model,
                          exp_cfg.SimCLRModel)
    self.assertIsInstance(config.task.train_data, exp_cfg.DataConfig)
    config.task.train_data.is_training = None
    with self.assertRaises(KeyError):
      config.validate()


if __name__ == '__main__':
  tf.test.main()