"...test/training_service/kubeflowTrainingService.test.ts" did not exist on "f98ee6721a2a9f16ee1bb39994e9a3480c0711aa"
simclr.py 11.4 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""SimCLR configurations."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
import dataclasses
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
20
21
22
23
from typing import List, Optional

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
from official.projects.simclr.modeling import simclr_model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
26
from official.vision.configs import backbones
from official.vision.configs import common
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


@dataclasses.dataclass
class Decoder(hyperparams.Config):
  decode_label: bool = True


@dataclasses.dataclass
class Parser(hyperparams.Config):
  """Parser config."""
  aug_rand_crop: bool = True
  aug_rand_hflip: bool = True
  aug_color_distort: bool = True
  aug_color_jitter_strength: float = 1.0
  aug_color_jitter_impl: str = 'simclrv2'  # 'simclrv1' or 'simclrv2'
  aug_rand_blur: bool = True
  parse_label: bool = True
  test_crop: bool = True
  mode: str = simclr_model.PRETRAIN


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Training data config."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
  # simclr specific configs
  parser: Parser = Parser()
  decoder: Decoder = Decoder()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
61
62
  # Useful when doing a sanity check that we absolutely use no labels while
  # pretrain by setting labels to zeros (default = False, keep original labels)
  input_set_label_to_zero: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104


@dataclasses.dataclass
class ProjectionHead(hyperparams.Config):
  proj_output_dim: int = 128
  num_proj_layers: int = 3
  ft_proj_idx: int = 1  # layer of the projection head to use for fine-tuning.


@dataclasses.dataclass
class SupervisedHead(hyperparams.Config):
  num_classes: int = 1001
  zero_init: bool = False


@dataclasses.dataclass
class ContrastiveLoss(hyperparams.Config):
  projection_norm: bool = True
  temperature: float = 0.1
  l2_weight_decay: float = 0.0


@dataclasses.dataclass
class ClassificationLosses(hyperparams.Config):
  label_smoothing: float = 0.0
  one_hot: bool = True
  l2_weight_decay: float = 0.0


@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5
  one_hot: bool = True


@dataclasses.dataclass
class SimCLRModel(hyperparams.Config):
  """SimCLR model config."""
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  projection_head: ProjectionHead = ProjectionHead(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
      proj_output_dim=128, num_proj_layers=3, ft_proj_idx=1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  supervised_head: SupervisedHead = SupervisedHead(num_classes=1001)
  norm_activation: common.NormActivation = common.NormActivation(
      norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)
  mode: str = simclr_model.PRETRAIN
  backbone_trainable: bool = True


@dataclasses.dataclass
class SimCLRPretrainTask(cfg.TaskConfig):
  """SimCLR pretraining task config."""
  model: SimCLRModel = SimCLRModel(mode=simclr_model.PRETRAIN)
  train_data: DataConfig = DataConfig(
      parser=Parser(mode=simclr_model.PRETRAIN), is_training=True)
  validation_data: DataConfig = DataConfig(
      parser=Parser(mode=simclr_model.PRETRAIN), is_training=False)
  loss: ContrastiveLoss = ContrastiveLoss()
  evaluation: Evaluation = Evaluation()
  init_checkpoint: Optional[str] = None
  # all or backbone
  init_checkpoint_modules: str = 'all'


@dataclasses.dataclass
class SimCLRFinetuneTask(cfg.TaskConfig):
  """SimCLR fine tune task config."""
  model: SimCLRModel = SimCLRModel(
      mode=simclr_model.FINETUNE,
      supervised_head=SupervisedHead(num_classes=1001, zero_init=True))
  train_data: DataConfig = DataConfig(
      parser=Parser(mode=simclr_model.FINETUNE), is_training=True)
  validation_data: DataConfig = DataConfig(
      parser=Parser(mode=simclr_model.FINETUNE), is_training=False)
  loss: ClassificationLosses = ClassificationLosses()
  evaluation: Evaluation = Evaluation()
  init_checkpoint: Optional[str] = None
  # all, backbone_projection or backbone
  init_checkpoint_modules: str = 'backbone_projection'


@exp_factory.register_config_factory('simclr_pretraining')
def simclr_pretraining() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=SimCLRPretrainTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


@exp_factory.register_config_factory('simclr_finetuning')
def simclr_finetuning() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=SimCLRFinetuneTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'


@exp_factory.register_config_factory('simclr_pretraining_imagenet')
def simclr_pretraining_imagenet() -> cfg.ExperimentConfig:
  """Image classification general."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  return cfg.ExperimentConfig(
      task=SimCLRPretrainTask(
          model=SimCLRModel(
              mode=simclr_model.PRETRAIN,
              backbone_trainable=True,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
              projection_head=ProjectionHead(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
189
                  proj_output_dim=128, num_proj_layers=3, ft_proj_idx=1),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
              supervised_head=SupervisedHead(num_classes=1001),
              norm_activation=common.NormActivation(
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=True)),
          loss=ContrastiveLoss(),
          evaluation=Evaluation(),
          train_data=DataConfig(
              parser=Parser(mode=simclr_model.PRETRAIN),
              decoder=Decoder(decode_label=True),
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              parser=Parser(mode=simclr_model.PRETRAIN),
              decoder=Decoder(decode_label=True),
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size),
      ),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=500 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'lars',
                  'lars': {
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
220
221
222
                      'momentum':
                          0.9,
                      'weight_decay_rate':
                          0.000001,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
223
                      'exclude_from_weight_decay': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
224
225
                          'batch_normalization', 'bias'
                      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      # 0.2 * BatchSize / 256
                      'initial_learning_rate': 0.2 * train_batch_size / 256,
                      # train_steps - warmup_steps
                      'decay_steps': 475 * steps_per_epoch
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      # 5% of total epochs
                      'warmup_steps': 25 * steps_per_epoch
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


@exp_factory.register_config_factory('simclr_finetuning_imagenet')
def simclr_finetuning_imagenet() -> cfg.ExperimentConfig:
  """Image classification general."""
  train_batch_size = 1024
  eval_batch_size = 1024
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  pretrain_model_base = ''
  return cfg.ExperimentConfig(
      task=SimCLRFinetuneTask(
          model=SimCLRModel(
              mode=simclr_model.FINETUNE,
              backbone_trainable=True,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
              projection_head=ProjectionHead(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
268
                  proj_output_dim=128, num_proj_layers=3, ft_proj_idx=1),
              supervised_head=SupervisedHead(num_classes=1001, zero_init=True),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
              norm_activation=common.NormActivation(
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
          loss=ClassificationLosses(),
          evaluation=Evaluation(),
          train_data=DataConfig(
              parser=Parser(mode=simclr_model.FINETUNE),
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              parser=Parser(mode=simclr_model.FINETUNE),
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size),
          init_checkpoint=pretrain_model_base,
          # all, backbone_projection or backbone
          init_checkpoint_modules='backbone_projection'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=60 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'lars',
                  'lars': {
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
297
298
299
300
                      'momentum':
                          0.9,
                      'weight_decay_rate':
                          0.0,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
                      'exclude_from_weight_decay': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
302
303
                          'batch_normalization', 'bias'
                      ]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                  }
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
                      # 0.01 × BatchSize / 512
                      'initial_learning_rate': 0.01 * train_batch_size / 512,
                      'decay_steps': 60 * steps_per_epoch
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])