masked_softmax.py 2.33 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based softmax layer with optional masking."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
22
23
24
25
26
27
28
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import tensorflow as tf


@tf.keras.utils.register_keras_serializable(package='Text')
class MaskedSoftmax(tf.keras.layers.Layer):
  """Performs a softmax with optional masking on a tensor.

29
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    mask_expansion_axes: Any axes that should be padded on the mask tensor.
  """

  def __init__(self, mask_expansion_axes=None, **kwargs):
    self._mask_expansion_axes = mask_expansion_axes
    super(MaskedSoftmax, self).__init__(**kwargs)

  def call(self, inputs):
    if isinstance(inputs, list) and len(inputs) == 2:
      scores, mask = inputs
    else:
      scores, mask = (inputs, None)

    if mask is not None:
      if self._mask_expansion_axes is not None:
        mask = tf.expand_dims(mask, axis=self._mask_expansion_axes)

      # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
      # masked positions, this operation will create a tensor which is 0.0 for
      # positions we want to attend and -10000.0 for masked positions.
      adder = (1.0 - tf.cast(mask, scores.dtype)) * -10000.0

      # Since we are adding it to the raw scores before the softmax, this is
      # effectively the same as removing these entirely.
      scores += adder

    return tf.nn.softmax(scores)

  def get_config(self):
    config = {'mask_expansion_axes': self._mask_expansion_axes}
    base_config = super(MaskedSoftmax, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))