segmentation_input.py 7.87 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""Data parser and processing for segmentation datasets."""

import tensorflow as tf
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops


class Decoder(decoder.Decoder):
  """A tf.Example decoder for segmentation task."""

  def __init__(self):
    self._keys_to_features = {
        'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/height': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/width': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/segmentation/class/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value='')
    }

  def decode(self, serialized_example):
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)


class Parser(parser.Parser):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
42
  """Parser to parse an image and its annotations into a dictionary of tensors.
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
45

  def __init__(self,
               output_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
46
               crop_size=None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
               resize_eval_groundtruth=True,
               groundtruth_padded_size=None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
55
56
57
58
               ignore_label=255,
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
62
      crop_size: `Tensor` or `list` for [height, width] of the crop. If
        specified a training crop of size crop_size is returned. This is useful
        for cropping original images during training while evaluating on
        original image sizes.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
64
65
66
67
      resize_eval_groundtruth: `bool`, if True, eval groundtruth masks are
        resized to output_size.
      groundtruth_padded_size: `Tensor` or `list` for [height, width]. When
        resize_eval_groundtruth is set to False, the groundtruth masks are
        padded to this size.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
69
70
71
72
73
74
75
76
77
78
      ignore_label: `int` the pixel with ignore label will not used for training
        and evaluation.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
    """
    self._output_size = output_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
    self._crop_size = crop_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80
81
82
83
84
    self._resize_eval_groundtruth = resize_eval_groundtruth
    if (not resize_eval_groundtruth) and (groundtruth_padded_size is None):
      raise ValueError('groundtruth_padded_size ([height, width]) needs to be'
                       'specified when resize_eval_groundtruth is False.')
    self._groundtruth_padded_size = groundtruth_padded_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    self._ignore_label = ignore_label

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # dtype.
    self._dtype = dtype

  def _prepare_image_and_label(self, data):
    """Prepare normalized image and label."""
    image = tf.io.decode_image(data['image/encoded'], channels=3)
    label = tf.io.decode_image(data['image/segmentation/class/encoded'],
                               channels=1)
    height = data['image/height']
    width = data['image/width']
    image = tf.reshape(image, (height, width, 3))

    label = tf.reshape(label, (1, height, width))
    label = tf.cast(label, tf.float32)
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)
    return image, label

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115
    if self._crop_size:

Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120
121
122
      # If output_size is specified, resize image, and label to desired
      # output_size.
      if self._output_size:
        image = tf.image.resize(image, self._output_size, method='bilinear')
        label = tf.image.resize(label, self._output_size, method='nearest')

Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
      image_mask = tf.concat([image, label], axis=2)
      image_mask_crop = tf.image.random_crop(image_mask,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
                                             self._crop_size + [4])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
126
      image = image_mask_crop[:, :, :-1]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
127
      label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128

Abdullah Rashwan's avatar
Abdullah Rashwan committed
129
130
    # Flips image randomly during training.
    if self._aug_rand_hflip:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
131
132
      image, _, label = preprocess_ops.random_horizontal_flip(
          image, masks=label)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
133

Abdullah Rashwan's avatar
Abdullah Rashwan committed
134
    train_image_size = self._crop_size if self._crop_size else self._output_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
138
139
        train_image_size,
        train_image_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
140
141
142
143
144
145
146
147
148
149
150
151
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Pad label and make sure the padded region assigned to the ignore label.
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)
    label = preprocess_ops.resize_and_crop_masks(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
152
        label, image_scale, train_image_size, offset)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
153
154
155
156
157
158
159
    label -= 1
    label = tf.where(tf.equal(label, -1),
                     self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)
    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
        'valid_masks': valid_mask,
        'image_info': image_info,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
176
177
178
    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image, self._output_size, self._output_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
179

Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
181
182
    if self._resize_eval_groundtruth:
      # Resizes eval masks to match input image sizes. In that case, mean IoU
      # is computed on output_size not the original size of the images.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
183
184
185
186
187
      image_scale = image_info[2, :]
      offset = image_info[3, :]
      label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                   self._output_size, offset)
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
188
189
190
      label = tf.image.pad_to_bounding_box(
          label, 0, 0, self._groundtruth_padded_size[0],
          self._groundtruth_padded_size[1])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191
192
193
194
195
196
197
198
199

    label -= 1
    label = tf.where(tf.equal(label, -1),
                     self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)

    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
200
201
        'valid_masks': valid_mask,
        'image_info': image_info
Abdullah Rashwan's avatar
Abdullah Rashwan committed
202
203
204
205
206
207
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels