bert_squad_benchmark.py 5.05 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.bert import run_squad
from official.bert.benchmark import benchmark_utils
from official.utils.misc import distribution_utils

# pylint: disable=line-too-long
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
SQUAD_SMALL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_small_meta_data'
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

  @flagsaver.flagsaver
  def _run_bert_squad(self):
    """Starts BERT SQuAD task."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy='mirrored', num_gpus=self.num_gpus)

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
        custom_callbacks=[self.timer_callback])


class BertSquadBenchmark(BertSquadBenchmarkBase):
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
    super(BertSquadBenchmark, self).__init__(output_dir=output_dir)

  def _setup(self):
    super(BertSquadBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_SMALL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1

  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0,
                                max_accuracy=1):
    """Starts BERT SQuAD performance benchmark test."""

    start_time_sec = time.time()
    self._run_bert_squad()
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    super(BertSquadBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def benchmark_1_gpu(self):
    """Test BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
    FLAGS.train_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_2_gpu(self):
    """Test BERT SQuAD model performance with 2 GPUs."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
    FLAGS.train_batch_size = 8

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_4_gpu(self):
    """Test BERT SQuAD model performance with 4 GPUs."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
    FLAGS.train_batch_size = 16

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_8_gpu(self):
    """Test BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)


if __name__ == '__main__':
  tf.test.main()