retinanet.py 14.6 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
"""RetinaNet configuration definition."""

17
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import os
Xianzhi Du's avatar
Xianzhi Du committed
19
from typing import List, Optional, Union
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20

21
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
25
26
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30


# pylint: disable=missing-class-docstring
31
# Keep for backward compatibility.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
@dataclasses.dataclass
33
34
class TfExampleDecoder(common.TfExampleDecoder):
  """A simple TF Example decoder config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
35
36


37
# Keep for backward compatibility.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
@dataclasses.dataclass
39
40
class TfExampleDecoderLabelMap(common.TfExampleDecoderLabelMap):
  """TF Example decoder with label map config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
42


43
# Keep for backward compatibility.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
@dataclasses.dataclass
45
46
class DataDecoder(common.DataDecoder):
  """Data decoder config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
49
50
51
52
53
54
55
56
57
58


@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
60
61
62
63
  # Can choose AutoAugment and RandAugment.
  aug_type: Optional[common.Augmentation] = None

  # Keep for backward compatibility. Not used.
  aug_policy: Optional[str] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65
66
67
68
69
70
71
72


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
73
  decoder: common.DataDecoder = common.DataDecoder()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
  file_type: str = 'tfrecord'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
78
79
80
81
82
83
84
85
86
87
88


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 3
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 4.0


@dataclasses.dataclass
class Losses(hyperparams.Config):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
89
  loss_weight: float = 1.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
91
92
93
94
95
96
  focal_loss_alpha: float = 0.25
  focal_loss_gamma: float = 1.5
  huber_loss_delta: float = 0.1
  box_loss_weight: int = 50
  l2_weight_decay: float = 0.0


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
99
100
101
102
103
@dataclasses.dataclass
class AttributeHead(hyperparams.Config):
  name: str = ''
  type: str = 'regression'
  size: int = 1


Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
105
106
107
108
@dataclasses.dataclass
class RetinaNetHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
Xianzhi Du's avatar
Xianzhi Du committed
109
  attribute_heads: List[AttributeHead] = dataclasses.field(default_factory=list)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
Fan Yang's avatar
Fan Yang committed
114
  apply_nms: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
116
117
118
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
Xianzhi Du's avatar
Xianzhi Du committed
119
  nms_version: str = 'v2'  # `v2`, `v1`, `batched`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
120
  use_cpu_nms: bool = False
Xianzhi Du's avatar
Xianzhi Du committed
121
  soft_nms_sigma: Optional[float] = None  # Only works when nms_version='v1'.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139


@dataclasses.dataclass
class RetinaNet(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 7
  anchor: Anchor = Anchor()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  head: RetinaNetHead = RetinaNetHead()
  detection_generator: DetectionGenerator = DetectionGenerator()
  norm_activation: common.NormActivation = common.NormActivation()


140
141
142
143
144
145
146
@dataclasses.dataclass
class ExportConfig(hyperparams.Config):
  output_normalized_coordinates: bool = False
  cast_num_detections_to_float: bool = False
  cast_detection_classes_to_float: bool = False


Abdullah Rashwan's avatar
Abdullah Rashwan committed
147
148
149
150
151
152
153
@dataclasses.dataclass
class RetinaNetTask(cfg.TaskConfig):
  model: RetinaNet = RetinaNet()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
Xianzhi Du's avatar
Xianzhi Du committed
154
155
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone, and/or decoder
Zhenyu Tan's avatar
Zhenyu Tan committed
156
  annotation_file: Optional[str] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
157
  per_category_metrics: bool = False
158
  export_config: ExportConfig = ExportConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172


@exp_factory.register_config_factory('retinanet')
def retinanet() -> cfg.ExperimentConfig:
  """RetinaNet general config."""
  return cfg.ExperimentConfig(
      task=RetinaNetTask(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


COCO_INPUT_PATH_BASE = 'coco'
173
COCO_TRAIN_EXAMPLES = 118287
Abdullah Rashwan's avatar
Abdullah Rashwan committed
174
175
176
177
178
179
180
181
COCO_VAL_EXAMPLES = 5000


@exp_factory.register_config_factory('retinanet_resnetfpn_coco')
def retinanet_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet."""
  train_batch_size = 256
  eval_batch_size = 8
182
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
183
184
185
186
187
188

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=RetinaNetTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
Zhenyu Tan's avatar
Zhenyu Tan committed
189
190
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191
192
193
          model=RetinaNet(
              num_classes=91,
              input_size=[640, 640, 3],
Xianzhi Du's avatar
Xianzhi Du committed
194
              norm_activation=common.NormActivation(use_sync_bn=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
195
196
197
198
199
200
201
202
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
Xianzhi Du's avatar
Xianzhi Du committed
203
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.2)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=72 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          57 * steps_per_epoch, 67 * steps_per_epoch
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
229
230
231
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('retinanet_spinenet_coco')
def retinanet_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet using SpineNet backbone."""
  train_batch_size = 256
  eval_batch_size = 8
256
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
257
258
259
260
261
  input_size = 640

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
Zhenyu Tan's avatar
Zhenyu Tan committed
262
263
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
266
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
                  spinenet=backbones.SpineNet(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
268
269
270
271
                      model_id='49',
                      stochastic_depth_drop_rate=0.2,
                      min_level=3,
                      max_level=7)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
272
273
274
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
275
276
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
277
278
279
280
281
282
283
284
285
286
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=4e-5),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
287
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
288
289
290
291
292
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
293
          train_steps=500 * steps_per_epoch,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
310
                          475 * steps_per_epoch, 490 * steps_per_epoch
Abdullah Rashwan's avatar
Abdullah Rashwan committed
311
312
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
313
314
315
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
316
317
318
319
320
321
322
323
324
325
326
327
328
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
329
          'task.validation_data.is_training != None',
Xianzhi Du's avatar
Xianzhi Du committed
330
331
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
332
333
334
      ])

  return config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336


Xianzhi Du's avatar
Xianzhi Du committed
337
@exp_factory.register_config_factory('retinanet_mobile_coco')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
338
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
Xianzhi Du's avatar
Xianzhi Du committed
339
  """COCO object detection with mobile RetinaNet."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  train_batch_size = 256
  eval_batch_size = 8
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  input_size = 384

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet_mobile',
                  spinenet_mobile=backbones.SpineNetMobile(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
354
355
356
                      model_id='49',
                      stochastic_depth_drop_rate=0.2,
                      min_level=3,
357
358
                      max_level=7,
                      use_keras_upsampling_2d=False)),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
359
360
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
361
              head=RetinaNetHead(num_filters=48, use_separable_conv=True),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
362
363
364
365
366
367
368
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
369
          losses=Losses(l2_weight_decay=3e-5),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=600 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          575 * steps_per_epoch, 590 * steps_per_epoch
                      ],
                      'values': [
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
417
          'task.validation_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
418
419
420
      ])

  return config