video_input.py 11.2 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Parser for video and label datasets."""

Yeqing Li's avatar
Yeqing Li committed
18
from typing import Dict, Optional, Tuple, Union
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

from absl import logging
import tensorflow as tf

from official.vision.beta.configs import video_classification as exp_cfg
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops_3d

IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'


def _process_image(image: tf.Tensor,
                   is_training: bool = True,
                   num_frames: int = 32,
                   stride: int = 1,
                   num_test_clips: int = 1,
                   min_resize: int = 224,
                   crop_size: int = 200,
                   zero_centering_image: bool = False,
                   seed: Optional[int] = None) -> tf.Tensor:
  """Processes a serialized image tensor.

  Args:
    image: Input Tensor of shape [timesteps] and type tf.string of serialized
      frames.
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    stride: Temporal stride to sample frames.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
    min_resize: Frames are resized so that min(height, width) is min_resize.
    crop_size: Final size of the frame after cropping the resized frames. Both
      height and width are the same.
    zero_centering_image: If True, frames are normalized to values in [-1, 1].
      If False, values in [0, 1].
    seed: A deterministic seed to use when sampling.

  Returns:
    Processed frames. Tensor of shape
      [num_frames * num_test_clips, crop_size, crop_size, 3].
  """
  # Validate parameters.
  if is_training and num_test_clips != 1:
    logging.warning(
        '`num_test_clips` %d is ignored since `is_training` is `True`.',
        num_test_clips)

  # Temporal sampler.
  if is_training:
    # Sample random clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride,
                                              seed)
  elif num_test_clips > 1:
    # Sample linspace clips.
    image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
                                                       num_frames, stride)
  else:
    # Sample middle clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, False, stride)

  # Decode JPEG string to tf.uint8.
  image = preprocess_ops_3d.decode_jpeg(image, 3)

  # Resize images (resize happens only if necessary to save compute).
  image = preprocess_ops_3d.resize_smallest(image, min_resize)

  if is_training:
    # Standard image data augmentation: random crop and random flip.
    image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, True,
                                         seed)
    image = preprocess_ops_3d.random_flip_left_right(image, seed)
  else:
    # Central crop of the frames.
    image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, False)

  # Cast the frames in float32, normalizing according to zero_centering_image.
  return preprocess_ops_3d.normalize_image(image, zero_centering_image)


def _postprocess_image(image: tf.Tensor,
                       is_training: bool = True,
                       num_frames: int = 32,
                       num_test_clips: int = 1) -> tf.Tensor:
  """Processes a batched Tensor of frames.

  The same parameters used in process should be used here.

  Args:
    image: Input Tensor of shape [batch, timesteps, height, width, 3].
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.

  Returns:
    Processed frames. Tensor of shape
      [batch * num_test_clips, num_frames, height, width, 3].
  """
  if num_test_clips > 1 and not is_training:
    # In this case, multiple clips are merged together in batch dimenstion which
    # will be B * num_test_clips.
Yeqing Li's avatar
Yeqing Li committed
128
    image = tf.reshape(image, (-1, num_frames) + image.shape[2:])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

  return image


def _process_label(label: tf.Tensor,
                   one_hot_label: bool = True,
                   num_classes: Optional[int] = None) -> tf.Tensor:
  """Processes label Tensor."""
  # Validate parameters.
  if one_hot_label and not num_classes:
    raise ValueError(
        '`num_classes` should be given when requesting one hot label.')

  # Cast to tf.int32.
  label = tf.cast(label, dtype=tf.int32)

  if one_hot_label:
    # Replace label index by one hot representation.
    label = tf.one_hot(label, num_classes)
Yeqing Li's avatar
Yeqing Li committed
148
149
150
151
152
    if len(label.shape.as_list()) > 1:
      label = tf.reduce_sum(label, axis=0)
    if num_classes == 1:
      # The trick for single label.
      label = 1 - label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
153
154
155
156
157
158
159
160

  return label


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
Yeqing Li's avatar
Yeqing Li committed
161
162
    self._image_key = image_key
    self._label_key = label_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
163
164
    self._context_description = {
        # One integer stored in context.
Yeqing Li's avatar
Yeqing Li committed
165
        self._label_key: tf.io.VarLenFeature(tf.int64),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
166
167
168
169
170
171
    }
    self._sequence_description = {
        # Each image is a string encoding JPEG.
        self._image_key: tf.io.FixedLenSequenceFeature((), tf.string),
    }

Yeqing Li's avatar
Yeqing Li committed
172
173
174
175
176
177
178
179
180
181
182
183
  def add_feature(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._sequence_description[feature_name] = feature_type

  def add_context(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._context_description[feature_name] = feature_type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
184
185
  def decode(self, serialized_example):
    """Parses a single tf.Example into image and label tensors."""
Yeqing Li's avatar
Yeqing Li committed
186
    result = {}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
187
188
189
    context, sequences = tf.io.parse_single_sequence_example(
        serialized_example, self._context_description,
        self._sequence_description)
Yeqing Li's avatar
Yeqing Li committed
190
191
192
193
194
195
    result.update(context)
    result.update(sequences)
    for key, value in result.items():
      if isinstance(value, tf.SparseTensor):
        result[key] = tf.sparse.to_dense(value)
    return result
Abdullah Rashwan's avatar
Abdullah Rashwan committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213


class Parser(parser.Parser):
  """Parses a video and label dataset."""

  def __init__(self,
               input_params: exp_cfg.DataConfig,
               image_key: str = IMAGE_KEY,
               label_key: str = LABEL_KEY):
    self._num_frames = input_params.feature_shape[0]
    self._stride = input_params.temporal_stride
    self._num_test_clips = input_params.num_test_clips
    self._min_resize = input_params.min_image_size
    self._crop_size = input_params.feature_shape[1]
    self._one_hot_label = input_params.one_hot
    self._num_classes = input_params.num_classes
    self._image_key = image_key
    self._label_key = label_key
214
    self._dtype = tf.dtypes.as_dtype(input_params.dtype)
Yeqing Li's avatar
Yeqing Li committed
215
216
217
218
    self._output_audio = input_params.output_audio
    if self._output_audio:
      self._audio_feature = input_params.audio_feature
      self._audio_shape = input_params.audio_feature_shape
Abdullah Rashwan's avatar
Abdullah Rashwan committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

  def _parse_train_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for training."""
    # Process image and label.
    image = decoded_tensors[self._image_key]
    image = _process_image(
        image=image,
        is_training=True,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
        crop_size=self._crop_size)
234
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
235
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
236
237

    label = decoded_tensors[self._label_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
238
239
    label = _process_label(label, self._one_hot_label, self._num_classes)

Yeqing Li's avatar
Yeqing Li committed
240
241
242
243
244
245
246
247
248
249
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      # TODO(yeqing): synchronize audio/video sampling. Especially randomness.
      audio = preprocess_ops_3d.sample_sequence(
          audio, self._audio_shape[0], random=False, stride=1)
      audio = tf.ensure_shape(audio, self._audio_shape)
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263

  def _parse_eval_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for evaluation."""
    image = decoded_tensors[self._image_key]
    image = _process_image(
        image=image,
        is_training=False,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
        crop_size=self._crop_size)
264
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
265
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
266
267

    label = decoded_tensors[self._label_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
268
269
    label = _process_label(label, self._one_hot_label, self._num_classes)

Yeqing Li's avatar
Yeqing Li committed
270
271
272
273
274
275
276
277
278
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      audio = preprocess_ops_3d.sample_sequence(
          audio, 20, random=False, stride=1)
      audio = tf.ensure_shape(audio, [20, 2048])
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
279
280
281
282
283
284
285
286
287
288
289


class PostBatchProcessor(object):
  """Processes a video and label dataset which is batched."""

  def __init__(self, input_params: exp_cfg.DataConfig):
    self._is_training = input_params.is_training

    self._num_frames = input_params.feature_shape[0]
    self._num_test_clips = input_params.num_test_clips

Yeqing Li's avatar
Yeqing Li committed
290
291
  def __call__(self, features: Dict[str, tf.Tensor],
               label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
292
    """Parses a single tf.Example into image and label tensors."""
Yeqing Li's avatar
Yeqing Li committed
293
294
295
296
297
298
299
300
301
    for key in ['image', 'audio']:
      if key in features:
        features[key] = _postprocess_image(
            image=features[key],
            is_training=self._is_training,
            num_frames=self._num_frames,
            num_test_clips=self._num_test_clips)

    return features, label