run_classifier.py 7.29 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import functools
from absl import app
from absl import flags
from absl import logging

import numpy as np
import tensorflow as tf
# pylint: disable=unused-import
from official.nlp import xlnet_config
from official.nlp import xlnet_modeling as modeling
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import training_utils
Hongkun Yu's avatar
Hongkun Yu committed
36
from official.utils.misc import tpu_lib
Hongkun Yu's avatar
Hongkun Yu committed
37
38

flags.DEFINE_integer("n_class", default=2, help="Number of classes.")
Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
42
flags.DEFINE_string(
    "summary_type",
    default="last",
    help="Method used to summarize a sequence into a vector.")
Hongkun Yu's avatar
Hongkun Yu committed
43
44
45
46

FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
47
48
49
50
def get_classificationxlnet_model(model_config,
                                  run_config,
                                  n_class,
                                  summary_type="last"):
Hongkun Yu's avatar
Hongkun Yu committed
51
  model = modeling.ClassificationXLNetModel(
Hongkun Yu's avatar
Hongkun Yu committed
52
      model_config, run_config, n_class, summary_type, name="model")
Hongkun Yu's avatar
Hongkun Yu committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  return model


def run_evaluation(strategy,
                   test_input_fn,
                   eval_steps,
                   model,
                   step,
                   eval_summary_writer=None):
  """Run evaluation for classification task.

  Args:
    strategy: distribution strategy.
    test_input_fn: input function for evaluation data.
    eval_steps: total number of evaluation steps.
    model: keras model object.
    step: current train step.
    eval_summary_writer: summary writer used to record evaluation metrics.  As
      there are fake data samples in validation set, we use mask to get rid of
      them when calculating the accuracy. For the reason that there will be
      dynamic-shape tensor, we first collect logits, labels and masks from TPU
      and calculate the accuracy via numpy locally.
Hongkun Yu's avatar
Hongkun Yu committed
75

76
77
  Returns:
    A float metric, accuracy.
Hongkun Yu's avatar
Hongkun Yu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  """

  def _test_step_fn(inputs):
    """Replicated validation step."""

    inputs["mems"] = None
    _, logits = model(inputs, training=False)
    return logits, inputs["label_ids"], inputs["is_real_example"]

  @tf.function
  def _run_evaluation(test_iterator):
    """Runs validation steps."""
    logits, labels, masks = strategy.experimental_run_v2(
        _test_step_fn, args=(next(test_iterator),))
    return logits, labels, masks

Hongkun Yu's avatar
Hongkun Yu committed
94
  test_iterator = data_utils.get_input_iterator(test_input_fn, strategy)
Hongkun Yu's avatar
Hongkun Yu committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  correct = 0
  total = 0
  for _ in range(eval_steps):
    logits, labels, masks = _run_evaluation(test_iterator)
    logits = strategy.experimental_local_results(logits)
    labels = strategy.experimental_local_results(labels)
    masks = strategy.experimental_local_results(masks)
    merged_logits = []
    merged_labels = []
    merged_masks = []

    for i in range(strategy.num_replicas_in_sync):
      merged_logits.append(logits[i].numpy())
      merged_labels.append(labels[i].numpy())
      merged_masks.append(masks[i].numpy())
    merged_logits = np.vstack(np.array(merged_logits))
    merged_labels = np.hstack(np.array(merged_labels))
    merged_masks = np.hstack(np.array(merged_masks))
    real_index = np.where(np.equal(merged_masks, 1))
    correct += np.sum(
        np.equal(
            np.argmax(merged_logits[real_index], axis=-1),
            merged_labels[real_index]))
    total += np.shape(real_index)[-1]
119
  accuracy = float(correct) / float(total)
Hongkun Yu's avatar
Hongkun Yu committed
120
  logging.info("Train step: %d  /  acc = %d/%d = %f", step, correct, total,
121
               accuracy)
Hongkun Yu's avatar
Hongkun Yu committed
122
123
124
125
  if eval_summary_writer:
    with eval_summary_writer.as_default():
      tf.summary.scalar("eval_acc", float(correct) / float(total), step=step)
      eval_summary_writer.flush()
126
  return accuracy
Hongkun Yu's avatar
Hongkun Yu committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167


def get_metric_fn():
  train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy(
      "acc", dtype=tf.float32)
  return train_acc_metric


def main(unused_argv):
  del unused_argv
  if FLAGS.strategy_type == "mirror":
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == "tpu":
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
  else:
    raise ValueError("The distribution strategy type is not supported: %s" %
                     FLAGS.strategy_type)
  if strategy:
    logging.info("***** Number of cores used : %d",
                 strategy.num_replicas_in_sync)
  train_input_fn = functools.partial(data_utils.get_classification_input_data,
                                     FLAGS.train_batch_size, FLAGS.seq_len,
                                     strategy, True, FLAGS.train_tfrecord_path)
  test_input_fn = functools.partial(data_utils.get_classification_input_data,
                                    FLAGS.test_batch_size, FLAGS.seq_len,
                                    strategy, False, FLAGS.test_tfrecord_path)

  total_training_steps = FLAGS.train_steps
  steps_per_loop = FLAGS.iterations
  eval_steps = int(FLAGS.test_data_size / FLAGS.test_batch_size)
  eval_fn = functools.partial(run_evaluation, strategy, test_input_fn,
                              eval_steps)
  optimizer, learning_rate_fn = optimization.create_optimizer(
      FLAGS.learning_rate,
      total_training_steps,
      FLAGS.warmup_steps,
      adam_epsilon=FLAGS.adam_epsilon)
  model_config = xlnet_config.XLNetConfig(FLAGS)
  run_config = xlnet_config.create_run_config(True, False, FLAGS)
  model_fn = functools.partial(get_classificationxlnet_model, model_config,
Hongkun Yu's avatar
Hongkun Yu committed
168
                               run_config, FLAGS.n_class, FLAGS.summary_type)
Hongkun Yu's avatar
Hongkun Yu committed
169
170
171
172
173
174
175
176
177
  input_meta_data = {}
  input_meta_data["d_model"] = FLAGS.d_model
  input_meta_data["mem_len"] = FLAGS.mem_len
  input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
                                               strategy.num_replicas_in_sync)
  input_meta_data["n_layer"] = FLAGS.n_layer
  input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
  input_meta_data["n_class"] = FLAGS.n_class

178
179
180
181
182
183
184
185
  training_utils.train(
      strategy=strategy,
      model_fn=model_fn,
      input_meta_data=input_meta_data,
      eval_fn=eval_fn,
      metric_fn=get_metric_fn,
      train_input_fn=train_input_fn,
      init_checkpoint=FLAGS.init_checkpoint,
186
      init_from_transformerxl=FLAGS.init_from_transformerxl,
187
188
189
190
191
      total_training_steps=total_training_steps,
      steps_per_loop=steps_per_loop,
      optimizer=optimizer,
      learning_rate_fn=learning_rate_fn,
      model_dir=FLAGS.model_dir,
Hongkun Yu's avatar
Hongkun Yu committed
192
      save_steps=FLAGS.save_steps)
Hongkun Yu's avatar
Hongkun Yu committed
193
194
195
196
197


if __name__ == "__main__":
  assert tf.version.VERSION.startswith('2.')
  app.run(main)