hyperparams_builder.py 6.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Builder function to construct tf-slim arg_scope for convolution, fc ops."""
import tensorflow as tf

from object_detection.protos import hyperparams_pb2

slim = tf.contrib.slim


def build(hyperparams_config, is_training):
  """Builds tf-slim arg_scope for convolution ops based on the config.

  Returns an arg_scope to use for convolution ops containing weights
  initializer, weights regularizer, activation function, batch norm function
  and batch norm parameters based on the configuration.

  Note that if the batch_norm parameteres are not specified in the config
  (i.e. left to default) then batch norm is excluded from the arg_scope.

  The batch norm parameters are set for updates based on `is_training` argument
  and conv_hyperparams_config.batch_norm.train parameter. During training, they
  are updated only if batch_norm.train parameter is true. However, during eval,
  no updates are made to the batch norm variables. In both cases, their current
  values are used during forward pass.

  Args:
    hyperparams_config: hyperparams.proto object containing
      hyperparameters.
    is_training: Whether the network is in training mode.

  Returns:
    arg_scope: tf-slim arg_scope containing hyperparameters for ops.

  Raises:
    ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
  """
  if not isinstance(hyperparams_config,
                    hyperparams_pb2.Hyperparams):
    raise ValueError('hyperparams_config not of type '
                     'hyperparams_pb.Hyperparams.')

  batch_norm = None
  batch_norm_params = None
  if hyperparams_config.HasField('batch_norm'):
    batch_norm = slim.batch_norm
    batch_norm_params = _build_batch_norm_params(
        hyperparams_config.batch_norm, is_training)

  affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
  if hyperparams_config.HasField('op') and (
      hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
    affected_ops = [slim.fully_connected]
  with slim.arg_scope(
      affected_ops,
      weights_regularizer=_build_regularizer(
          hyperparams_config.regularizer),
      weights_initializer=_build_initializer(
          hyperparams_config.initializer),
      activation_fn=_build_activation_fn(hyperparams_config.activation),
      normalizer_fn=batch_norm,
      normalizer_params=batch_norm_params) as sc:
    return sc


def _build_activation_fn(activation_fn):
  """Builds a callable activation from config.

  Args:
    activation_fn: hyperparams_pb2.Hyperparams.activation

  Returns:
    Callable activation function.

  Raises:
    ValueError: On unknown activation function.
  """
  if activation_fn == hyperparams_pb2.Hyperparams.NONE:
    return None
  if activation_fn == hyperparams_pb2.Hyperparams.RELU:
    return tf.nn.relu
  if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
    return tf.nn.relu6
  raise ValueError('Unknown activation function: {}'.format(activation_fn))


def _build_regularizer(regularizer):
  """Builds a tf-slim regularizer from config.

  Args:
    regularizer: hyperparams_pb2.Hyperparams.regularizer proto.

  Returns:
    tf-slim regularizer.

  Raises:
    ValueError: On unknown regularizer.
  """
  regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
  if  regularizer_oneof == 'l1_regularizer':
114
    return slim.l1_regularizer(scale=float(regularizer.l1_regularizer.weight))
115
  if regularizer_oneof == 'l2_regularizer':
116
    return slim.l2_regularizer(scale=float(regularizer.l2_regularizer.weight))
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))


def _build_initializer(initializer):
  """Build a tf initializer from config.

  Args:
    initializer: hyperparams_pb2.Hyperparams.regularizer proto.

  Returns:
    tf initializer.

  Raises:
    ValueError: On unknown initializer.
  """
  initializer_oneof = initializer.WhichOneof('initializer_oneof')
  if initializer_oneof == 'truncated_normal_initializer':
    return tf.truncated_normal_initializer(
        mean=initializer.truncated_normal_initializer.mean,
        stddev=initializer.truncated_normal_initializer.stddev)
137
138
139
140
  if initializer_oneof == 'random_normal_initializer':
    return tf.random_normal_initializer(
        mean=initializer.random_normal_initializer.mean,
        stddev=initializer.random_normal_initializer.stddev)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  if initializer_oneof == 'variance_scaling_initializer':
    enum_descriptor = (hyperparams_pb2.VarianceScalingInitializer.
                       DESCRIPTOR.enum_types_by_name['Mode'])
    mode = enum_descriptor.values_by_number[initializer.
                                            variance_scaling_initializer.
                                            mode].name
    return slim.variance_scaling_initializer(
        factor=initializer.variance_scaling_initializer.factor,
        mode=mode,
        uniform=initializer.variance_scaling_initializer.uniform)
  raise ValueError('Unknown initializer function: {}'.format(
      initializer_oneof))


def _build_batch_norm_params(batch_norm, is_training):
  """Build a dictionary of batch_norm params from config.

  Args:
    batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.
    is_training: Whether the models is in training mode.

  Returns:
    A dictionary containing batch_norm parameters.
  """
  batch_norm_params = {
      'decay': batch_norm.decay,
      'center': batch_norm.center,
      'scale': batch_norm.scale,
      'epsilon': batch_norm.epsilon,
      'is_training': is_training and batch_norm.train,
  }
  return batch_norm_params