optimizer_factory.py 5.75 KB
Newer Older
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Optimizer factory class."""
Le Hou's avatar
Le Hou committed
16
from typing import Callable, Union
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18


Le Hou's avatar
Le Hou committed
19
import gin
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import tensorflow as tf
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
import tensorflow_addons.optimizers as tfa_optimizers

Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
from official.modeling.optimization import ema_optimizer
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
29
30
31
from official.modeling.optimization import lr_schedule
from official.modeling.optimization.configs import optimization_config as opt_cfg
from official.nlp import optimization as nlp_optimization

OPTIMIZERS_CLS = {
    'sgd': tf.keras.optimizers.SGD,
    'adam': tf.keras.optimizers.Adam,
    'adamw': nlp_optimization.AdamWeightDecay,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
    'lamb': tfa_optimizers.LAMB,
    'rmsprop': tf.keras.optimizers.RMSprop
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
35
36
37
38
39
}

LR_CLS = {
    'stepwise': tf.keras.optimizers.schedules.PiecewiseConstantDecay,
    'polynomial': tf.keras.optimizers.schedules.PolynomialDecay,
    'exponential': tf.keras.optimizers.schedules.ExponentialDecay,
40
41
    'cosine': tf.keras.experimental.CosineDecay,
    'power': lr_schedule.DirectPowerDecay,
Le Hou's avatar
Le Hou committed
42
    'power_linear': lr_schedule.PowerAndLinearDecay,
Le Hou's avatar
Le Hou committed
43
    'power_with_offset': lr_schedule.PowerDecayWithOffset,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
45
46
}

WARMUP_CLS = {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
    'linear': lr_schedule.LinearWarmup,
    'polynomial': lr_schedule.PolynomialWarmUp
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
}


Hongkun Yu's avatar
Hongkun Yu committed
52
class OptimizerFactory:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
  """Optimizer factory class.

  This class builds learning rate and optimizer based on an optimization config.
  To use this class, you need to do the following:
  (1) Define optimization config, this includes optimizer, and learning rate
      schedule.
  (2) Initialize the class using the optimization config.
  (3) Build learning rate.
  (4) Build optimizer.

  This is a typical example for using this class:
  params = {
        'optimizer': {
            'type': 'sgd',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
67
            'sgd': {'momentum': 0.9}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        },
        'learning_rate': {
            'type': 'stepwise',
            'stepwise': {'boundaries': [10000, 20000],
                         'values': [0.1, 0.01, 0.001]}
        },
        'warmup': {
            'type': 'linear',
            'linear': {'warmup_steps': 500, 'warmup_learning_rate': 0.01}
        }
    }
  opt_config = OptimizationConfig(params)
  opt_factory = OptimizerFactory(opt_config)
  lr = opt_factory.build_learning_rate()
  optimizer = opt_factory.build_optimizer(lr)
  """

  def __init__(self, config: opt_cfg.OptimizationConfig):
    """Initializing OptimizerFactory.

    Args:
      config: OptimizationConfig instance contain optimization config.
    """
    self._config = config
    self._optimizer_config = config.optimizer.get()
    self._optimizer_type = config.optimizer.type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
96
97
98
    self._use_ema = config.ema is not None
    self._ema_config = config.ema

    if self._optimizer_config is None:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
102
103
      raise ValueError('Optimizer type must be specified')

    self._lr_config = config.learning_rate.get()
    self._lr_type = config.learning_rate.type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
105
106
    if self._lr_type is None:
      raise ValueError('Learning rate type must be specified')

Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108
109
110
111
112
113
    self._warmup_config = config.warmup.get()
    self._warmup_type = config.warmup.type

  def build_learning_rate(self):
    """Build learning rate.

    Builds learning rate from config. Learning rate schedule is built according
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115
    to the learning rate config. If learning rate type is consant,
    lr_config.learning_rate is returned.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117

    Returns:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119
      tf.keras.optimizers.schedules.LearningRateSchedule instance. If
      learning rate type is consant, lr_config.learning_rate is returned.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
    """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
    if self._lr_type == 'constant':
      lr = self._lr_config.learning_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
125
126
127
128
129
130
    else:
      lr = LR_CLS[self._lr_type](**self._lr_config.as_dict())

    if self._warmup_config:
      lr = WARMUP_CLS[self._warmup_type](lr, **self._warmup_config.as_dict())

    return lr

Le Hou's avatar
Le Hou committed
131
  @gin.configurable
Abdullah Rashwan's avatar
Abdullah Rashwan committed
132
  def build_optimizer(
Le Hou's avatar
Le Hou committed
133
134
135
136
      self,
      lr: Union[tf.keras.optimizers.schedules.LearningRateSchedule, float],
      postprocessor: Callable[[tf.keras.optimizers.Optimizer],
                              tf.keras.optimizers.Optimizer] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
138
139
140
141
142
143
    """Build optimizer.

    Builds optimizer from config. It takes learning rate as input, and builds
    the optimizer according to the optimizer config. Typically, the learning
    rate built using self.build_lr() is passed as an argument to this method.

    Args:
Hongkun Yu's avatar
Hongkun Yu committed
144
145
      lr: A floating point value, or a
        tf.keras.optimizers.schedules.LearningRateSchedule instance.
Le Hou's avatar
Le Hou committed
146
147
      postprocessor: An optional function for postprocessing the optimizer. It
        takes an optimizer and returns an optimizer.
Hongkun Yu's avatar
Hongkun Yu committed
148

Abdullah Rashwan's avatar
Abdullah Rashwan committed
149
150
151
152
153
    Returns:
      tf.keras.optimizers.Optimizer instance.
    """

    optimizer_dict = self._optimizer_config.as_dict()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156
157
158
159
    ## Delete clipnorm and clipvalue if None
    if optimizer_dict['clipnorm'] is None:
      del optimizer_dict['clipnorm']
    if optimizer_dict['clipvalue'] is None:
      del optimizer_dict['clipvalue']

Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
162
    optimizer_dict['learning_rate'] = lr

    optimizer = OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
163
164
165
166

    if self._use_ema:
      optimizer = ema_optimizer.ExponentialMovingAverage(
          optimizer, **self._ema_config.as_dict())
Le Hou's avatar
Le Hou committed
167
168
169
170
171
    if postprocessor:
      optimizer = postprocessor(optimizer)
    assert isinstance(optimizer, tf.keras.optimizers.Optimizer), (
        'OptimizerFactory.build_optimizer returning a non-optimizer object: '
        '{}'.format(optimizer))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
172

Abdullah Rashwan's avatar
Abdullah Rashwan committed
173
    return optimizer