masked_lm.py 6.41 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Masked language task."""
import dataclasses
import tensorflow as tf

from official.core import base_task
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
from official.nlp.data import pretrain_dataloader
from official.nlp.modeling import losses as loss_lib


@dataclasses.dataclass
class MaskedLMConfig(cfg.TaskConfig):
  """The model config."""
  network: bert.BertPretrainerConfig = bert.BertPretrainerConfig(cls_heads=[
      bert.ClsHeadConfig(
          inner_dim=768, num_classes=2, dropout_rate=0.1, name='next_sentence')
  ])
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


@base_task.register_task_cls(MaskedLMConfig)
class MaskedLMTask(base_task.Task):
  """Mock task object for testing."""

  def build_model(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
    return bert.instantiate_bertpretrainer_from_cfg(self.task_config.network)
Hongkun Yu's avatar
Hongkun Yu committed
44
45

  def build_losses(self,
46
                   labels,
Hongkun Yu's avatar
Hongkun Yu committed
47
48
49
50
                   model_outputs,
                   metrics,
                   aux_losses=None) -> tf.Tensor:
    metrics = dict([(metric.name, metric) for metric in metrics])
Hongkun Yu's avatar
Hongkun Yu committed
51
52
    lm_output = tf.nn.log_softmax(
        tf.cast(model_outputs['lm_output'], tf.float32), axis=-1)
Hongkun Yu's avatar
Hongkun Yu committed
53
    mlm_loss = loss_lib.weighted_sparse_categorical_crossentropy_loss(
54
        labels=labels['masked_lm_ids'],
Hongkun Yu's avatar
Hongkun Yu committed
55
        predictions=lm_output,
56
        weights=labels['masked_lm_weights'])
Hongkun Yu's avatar
Hongkun Yu committed
57
    metrics['lm_example_loss'].update_state(mlm_loss)
58
59
    if 'next_sentence_labels' in labels:
      sentence_labels = labels['next_sentence_labels']
Hongkun Yu's avatar
Hongkun Yu committed
60
61
      sentence_outputs = tf.cast(
          model_outputs['next_sentence'], dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
62
63
      sentence_loss = loss_lib.weighted_sparse_categorical_crossentropy_loss(
          labels=sentence_labels,
Hongkun Yu's avatar
Hongkun Yu committed
64
          predictions=tf.nn.log_softmax(sentence_outputs, axis=-1))
Hongkun Yu's avatar
Hongkun Yu committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
      metrics['next_sentence_loss'].update_state(sentence_loss)
      total_loss = mlm_loss + sentence_loss
    else:
      total_loss = mlm_loss

    if aux_losses:
      total_loss += tf.add_n(aux_losses)
    return total_loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for pretraining."""
    if params.input_path == 'dummy':
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
        return dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids,
            masked_lm_positions=dummy_lm,
            masked_lm_ids=dummy_lm,
            masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
            next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return pretrain_dataloader.BertPretrainDataLoader(params).load(
        input_context)

  def build_metrics(self, training=None):
    del training
    metrics = [
101
        tf.keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
Hongkun Yu's avatar
Hongkun Yu committed
102
103
104
105
106
107
108
109
110
111
        tf.keras.metrics.Mean(name='lm_example_loss')
    ]
    # TODO(hongkuny): rethink how to manage metrics creation with heads.
    if self.task_config.train_data.use_next_sentence_label:
      metrics.append(
          tf.keras.metrics.SparseCategoricalAccuracy(
              name='next_sentence_accuracy'))
      metrics.append(tf.keras.metrics.Mean(name='next_sentence_loss'))
    return metrics

112
  def process_metrics(self, metrics, labels, model_outputs):
Hongkun Yu's avatar
Hongkun Yu committed
113
114
    metrics = dict([(metric.name, metric) for metric in metrics])
    if 'masked_lm_accuracy' in metrics:
115
116
117
      metrics['masked_lm_accuracy'].update_state(labels['masked_lm_ids'],
                                                 model_outputs['lm_output'],
                                                 labels['masked_lm_weights'])
Hongkun Yu's avatar
Hongkun Yu committed
118
119
    if 'next_sentence_accuracy' in metrics:
      metrics['next_sentence_accuracy'].update_state(
120
          labels['next_sentence_labels'], model_outputs['next_sentence'])
Hongkun Yu's avatar
Hongkun Yu committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

  def train_step(self, inputs, model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer, metrics):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    with tf.GradientTape() as tape:
      outputs = model(inputs, training=True)
      # Computes per-replica loss.
      loss = self.build_losses(
139
          labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
          model_outputs=outputs,
          metrics=metrics,
          aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      # TODO(b/154564893): enable loss scaling.
      # scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
    tvars = model.trainable_variables
    grads = tape.gradient(loss, tvars)
    optimizer.apply_gradients(list(zip(grads, tvars)))
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}

  def validation_step(self, inputs, model: tf.keras.Model, metrics):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    outputs = self.inference_step(inputs, model)
    loss = self.build_losses(
166
        labels=inputs,
Hongkun Yu's avatar
Hongkun Yu committed
167
168
169
170
171
        model_outputs=outputs,
        metrics=metrics,
        aux_losses=model.losses)
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}