optimizer_factory.py 7.46 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Optimizer factory class."""
from typing import Callable, Optional, Union, List, Tuple

import gin
import tensorflow as tf
import tensorflow_addons.optimizers as tfa_optimizers

from official.modeling.optimization import slide_optimizer
from official.modeling.optimization import adafactor_optimizer
from official.modeling.optimization import ema_optimizer
from official.modeling.optimization import lars_optimizer
from official.modeling.optimization import lr_schedule
from official.modeling.optimization.configs import optimization_config as opt_cfg
from official.nlp import optimization as nlp_optimization

OPTIMIZERS_CLS = {
    'sgd': tf.keras.optimizers.SGD,
    'adam': tf.keras.optimizers.Adam,
    'adamw': nlp_optimization.AdamWeightDecay,
    'lamb': tfa_optimizers.LAMB,
    'rmsprop': tf.keras.optimizers.RMSprop,
    'lars': lars_optimizer.LARS,
    'adagrad': tf.keras.optimizers.Adagrad,
    'slide': slide_optimizer.SLIDE,
    'adafactor': adafactor_optimizer.Adafactor,
}

LR_CLS = {
    'stepwise': lr_schedule.PiecewiseConstantDecayWithOffset,
    'polynomial': lr_schedule.PolynomialDecayWithOffset,
    'exponential': lr_schedule.ExponentialDecayWithOffset,
    'cosine': lr_schedule.CosineDecayWithOffset,
    'power': lr_schedule.DirectPowerDecay,
    'power_linear': lr_schedule.PowerAndLinearDecay,
    'power_with_offset': lr_schedule.PowerDecayWithOffset,
    'step_cosine_with_offset': lr_schedule.StepConsineDecayWithOffset,
}

WARMUP_CLS = {
    'linear': lr_schedule.LinearWarmup,
    'polynomial': lr_schedule.PolynomialWarmUp
}


def register_optimizer_cls(
    key: str, optimizer_config_cls: tf.keras.optimizers.Optimizer):
  """Register customize optimizer cls.

  The user will still need to subclass data classes in
  configs.optimization_config to be used with OptimizerFactory.

  Args:
    key: A string to that the optimizer_config_cls is registered with.
    optimizer_config_cls: A class which inherits tf.keras.optimizers.Optimizer.
  """
  if key in OPTIMIZERS_CLS:
    raise ValueError('%s already registered in OPTIMIZER_CLS.' % key)
  OPTIMIZERS_CLS[key] = optimizer_config_cls


class OptimizerFactory:
  """Optimizer factory class.

  This class builds learning rate and optimizer based on an optimization config.
  To use this class, you need to do the following:
  (1) Define optimization config, this includes optimizer, and learning rate
      schedule.
  (2) Initialize the class using the optimization config.
  (3) Build learning rate.
  (4) Build optimizer.

  This is a typical example for using this class:
  params = {
        'optimizer': {
            'type': 'sgd',
            'sgd': {'momentum': 0.9}
        },
        'learning_rate': {
            'type': 'stepwise',
            'stepwise': {'boundaries': [10000, 20000],
                         'values': [0.1, 0.01, 0.001]}
        },
        'warmup': {
            'type': 'linear',
            'linear': {'warmup_steps': 500, 'warmup_learning_rate': 0.01}
        }
    }
  opt_config = OptimizationConfig(params)
  opt_factory = OptimizerFactory(opt_config)
  lr = opt_factory.build_learning_rate()
  optimizer = opt_factory.build_optimizer(lr)
  """

  def __init__(self, config: opt_cfg.OptimizationConfig):
    """Initializing OptimizerFactory.

    Args:
      config: OptimizationConfig instance contain optimization config.
    """
    self._config = config
    self._optimizer_config = config.optimizer.get()
    self._optimizer_type = config.optimizer.type

    self._use_ema = config.ema is not None
    self._ema_config = config.ema

    if self._optimizer_config is None:
      raise ValueError('Optimizer type must be specified')

    self._lr_config = config.learning_rate.get()
    self._lr_type = config.learning_rate.type

    if self._lr_type is None:
      raise ValueError('Learning rate type must be specified')

    self._warmup_config = config.warmup.get()
    self._warmup_type = config.warmup.type

  def build_learning_rate(self):
    """Build learning rate.

    Builds learning rate from config. Learning rate schedule is built according
    to the learning rate config. If learning rate type is consant,
    lr_config.learning_rate is returned.

    Returns:
      tf.keras.optimizers.schedules.LearningRateSchedule instance. If
      learning rate type is consant, lr_config.learning_rate is returned.
    """
    if self._lr_type == 'constant':
      lr = self._lr_config.learning_rate
    else:
      lr = LR_CLS[self._lr_type](**self._lr_config.as_dict())

    if self._warmup_config:
      lr = WARMUP_CLS[self._warmup_type](lr, **self._warmup_config.as_dict())

    return lr

  @gin.configurable
  def build_optimizer(
      self,
      lr: Union[tf.keras.optimizers.schedules.LearningRateSchedule, float],
      gradient_transformers: Optional[List[Callable[
          [List[Tuple[tf.Tensor, tf.Tensor]]], List[Tuple[tf.Tensor, tf.Tensor]]
      ]]] = None,
      postprocessor: Optional[Callable[[tf.keras.optimizers.Optimizer],
                                       tf.keras.optimizers.Optimizer]] = None):
    """Build optimizer.

    Builds optimizer from config. It takes learning rate as input, and builds
    the optimizer according to the optimizer config. Typically, the learning
    rate built using self.build_lr() is passed as an argument to this method.

    Args:
      lr: A floating point value, or a
        tf.keras.optimizers.schedules.LearningRateSchedule instance.
      gradient_transformers: Optional list of functions to use to transform
        gradients before applying updates to Variables. The functions are
        applied after gradient_aggregator. The functions should accept and
        return a list of (gradient, variable) tuples. clipvalue, clipnorm,
        global_clipnorm should not be set when gradient_transformers is passed.
      postprocessor: An optional function for postprocessing the optimizer. It
        takes an optimizer and returns an optimizer.

    Returns:
      tf.keras.optimizers.Optimizer instance.
    """

    optimizer_dict = self._optimizer_config.as_dict()
    ## Delete clipnorm, clipvalue, global_clipnorm if None
    if optimizer_dict['clipnorm'] is None:
      del optimizer_dict['clipnorm']
    if optimizer_dict['clipvalue'] is None:
      del optimizer_dict['clipvalue']
    if optimizer_dict['global_clipnorm'] is None:
      del optimizer_dict['global_clipnorm']

    optimizer_dict['learning_rate'] = lr
    if gradient_transformers is not None:
      optimizer_dict['gradient_transformers'] = gradient_transformers

    optimizer = OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict)

    if self._use_ema:
      optimizer = ema_optimizer.ExponentialMovingAverage(
          optimizer, **self._ema_config.as_dict())
    if postprocessor:
      optimizer = postprocessor(optimizer)
    assert isinstance(optimizer, tf.keras.optimizers.Optimizer), (
        'OptimizerFactory.build_optimizer returning a non-optimizer object: '
        '{}'.format(optimizer))

    return optimizer